基于流程挖掘和深度知识追踪的个性化流程型学习路径推荐

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Feng Zhang, Xuguang Feng, Yibing Wang
{"title":"基于流程挖掘和深度知识追踪的个性化流程型学习路径推荐","authors":"Feng Zhang,&nbsp;Xuguang Feng,&nbsp;Yibing Wang","doi":"10.1016/j.knosys.2024.112431","DOIUrl":null,"url":null,"abstract":"<div><p>Personalized learning path recommendation considers learning goals, learning abilities, and other personalized characteristics of learners to generate a suitable learning path. Existing approaches include global optimal and local iterative path recommendation, which recommend a sequence of learning objects. Consequently, the learner can only learn in the order specified by the learning path, which provides limited flexibility for the learner. In addition, existing studies cannot both present the complete path and handle changes in the learner's knowledge state while learning along the path. This study proposes a process-type learning path model and its recommendation approach, which presents a learning path in the form of a flowchart and dynamically recommends path branches according to the knowledge states of the learner during the learning process. Specifically, deep knowledge tracing is used to annotate the knowledge states of learners in historical logs, and process mining is used to generate a personalized process–type learning path that contains sequences, parallel relationships, and selection relationships between learning objects. In addition, the correlation between the knowledge state and the selection of different branches of a learning path in historical logs can be obtained via decision mining. Thus, a branch recommendation model is trained and used to recommend a path branch in a process-type path with the highest probability of mastering the target learning object of the learner based on the learner's knowledge state. The experimental results demonstrate that the learning effectiveness and efficiency of the proposed approach are better than those of the existing approaches.</p></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized process–type learning path recommendation based on process mining and deep knowledge tracing\",\"authors\":\"Feng Zhang,&nbsp;Xuguang Feng,&nbsp;Yibing Wang\",\"doi\":\"10.1016/j.knosys.2024.112431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Personalized learning path recommendation considers learning goals, learning abilities, and other personalized characteristics of learners to generate a suitable learning path. Existing approaches include global optimal and local iterative path recommendation, which recommend a sequence of learning objects. Consequently, the learner can only learn in the order specified by the learning path, which provides limited flexibility for the learner. In addition, existing studies cannot both present the complete path and handle changes in the learner's knowledge state while learning along the path. This study proposes a process-type learning path model and its recommendation approach, which presents a learning path in the form of a flowchart and dynamically recommends path branches according to the knowledge states of the learner during the learning process. Specifically, deep knowledge tracing is used to annotate the knowledge states of learners in historical logs, and process mining is used to generate a personalized process–type learning path that contains sequences, parallel relationships, and selection relationships between learning objects. In addition, the correlation between the knowledge state and the selection of different branches of a learning path in historical logs can be obtained via decision mining. Thus, a branch recommendation model is trained and used to recommend a path branch in a process-type path with the highest probability of mastering the target learning object of the learner based on the learner's knowledge state. The experimental results demonstrate that the learning effectiveness and efficiency of the proposed approach are better than those of the existing approaches.</p></div>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124010657\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124010657","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

个性化学习路径推荐考虑了学习者的学习目标、学习能力和其他个性化特征,以生成合适的学习路径。现有的方法包括全局最优路径推荐和局部迭代路径推荐,它们推荐的是一系列学习对象。因此,学习者只能按照学习路径指定的顺序进行学习,这为学习者提供了有限的灵活性。此外,现有研究既无法呈现完整的路径,也无法处理学习者在路径学习过程中知识状态的变化。本研究提出了一种流程型学习路径模型及其推荐方法,以流程图的形式呈现学习路径,并根据学习者在学习过程中的知识状态动态推荐路径分支。具体来说,深度知识追踪用于标注历史日志中学习者的知识状态,流程挖掘用于生成个性化的流程型学习路径,其中包含学习对象之间的序列、并行关系和选择关系。此外,还可以通过决策挖掘获得历史日志中知识状态与学习路径不同分支选择之间的相关性。这样,就可以训练出一个分支推荐模型,用于根据学习者的知识状态,推荐掌握学习者目标学习对象概率最高的过程型路径中的路径分支。实验结果表明,所提方法的学习效果和效率均优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalized process–type learning path recommendation based on process mining and deep knowledge tracing

Personalized learning path recommendation considers learning goals, learning abilities, and other personalized characteristics of learners to generate a suitable learning path. Existing approaches include global optimal and local iterative path recommendation, which recommend a sequence of learning objects. Consequently, the learner can only learn in the order specified by the learning path, which provides limited flexibility for the learner. In addition, existing studies cannot both present the complete path and handle changes in the learner's knowledge state while learning along the path. This study proposes a process-type learning path model and its recommendation approach, which presents a learning path in the form of a flowchart and dynamically recommends path branches according to the knowledge states of the learner during the learning process. Specifically, deep knowledge tracing is used to annotate the knowledge states of learners in historical logs, and process mining is used to generate a personalized process–type learning path that contains sequences, parallel relationships, and selection relationships between learning objects. In addition, the correlation between the knowledge state and the selection of different branches of a learning path in historical logs can be obtained via decision mining. Thus, a branch recommendation model is trained and used to recommend a path branch in a process-type path with the highest probability of mastering the target learning object of the learner based on the learner's knowledge state. The experimental results demonstrate that the learning effectiveness and efficiency of the proposed approach are better than those of the existing approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信