大分级修正的户田等级体系及其扩展

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Yi Yang , Wenjuan Rui , Jipeng Cheng
{"title":"大分级修正的户田等级体系及其扩展","authors":"Yi Yang ,&nbsp;Wenjuan Rui ,&nbsp;Jipeng Cheng","doi":"10.1016/j.physd.2024.134343","DOIUrl":null,"url":null,"abstract":"<div><p>Modified Toda hierarchy is just the two-component first modified KP hierarchy, which is related to 2D Toda hierarchy through Miura transformation and also has been widely used in discussing the B-Toda and C-Toda hierarchies. In this paper, we firstly construct <span><math><mrow><mo>(</mo><mi>N</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></math></span>-bigraded modified Toda hierarchy (BMTH) as a reduction of modified Toda hierarchy, and give corresponding Lie algebra interpretation. After that, we propose two kinds of extensions of <span><math><mrow><mo>(</mo><mi>N</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></math></span>-BMTH. One is extended by using logarithmic flows, while the other is <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>D extension, which is corresponding to the toroidal Lie algebra <span><math><msubsup><mrow><mi>sl</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>tor</mi></mrow></msubsup></math></span>. At last, the relation of these two kinds of extensions also is discussed.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"469 ","pages":"Article 134343"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bigraded modified Toda hierarchy and its extensions\",\"authors\":\"Yi Yang ,&nbsp;Wenjuan Rui ,&nbsp;Jipeng Cheng\",\"doi\":\"10.1016/j.physd.2024.134343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modified Toda hierarchy is just the two-component first modified KP hierarchy, which is related to 2D Toda hierarchy through Miura transformation and also has been widely used in discussing the B-Toda and C-Toda hierarchies. In this paper, we firstly construct <span><math><mrow><mo>(</mo><mi>N</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></math></span>-bigraded modified Toda hierarchy (BMTH) as a reduction of modified Toda hierarchy, and give corresponding Lie algebra interpretation. After that, we propose two kinds of extensions of <span><math><mrow><mo>(</mo><mi>N</mi><mo>,</mo><mi>M</mi><mo>)</mo></mrow></math></span>-BMTH. One is extended by using logarithmic flows, while the other is <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>D extension, which is corresponding to the toroidal Lie algebra <span><math><msubsup><mrow><mi>sl</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>tor</mi></mrow></msubsup></math></span>. At last, the relation of these two kinds of extensions also is discussed.</p></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"469 \",\"pages\":\"Article 134343\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892400294X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400294X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

修正的户田层次结构只是双分量第一修正的KP层次结构,它通过三浦变换与二维户田层次结构相关,也被广泛用于讨论B-户田和C-户田层次结构。本文首先构造了(N,M)-大等级修正户田层次结构(BMTH)作为修正户田层次结构的还原,并给出了相应的李代数解释。然后,我们提出了 (N,M)-BMTH 的两种扩展。一种是使用对数流的扩展,另一种是 (2+1)D 扩展,它与环形李代数 slntor 相对应。最后,还讨论了这两种扩展的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bigraded modified Toda hierarchy and its extensions

Modified Toda hierarchy is just the two-component first modified KP hierarchy, which is related to 2D Toda hierarchy through Miura transformation and also has been widely used in discussing the B-Toda and C-Toda hierarchies. In this paper, we firstly construct (N,M)-bigraded modified Toda hierarchy (BMTH) as a reduction of modified Toda hierarchy, and give corresponding Lie algebra interpretation. After that, we propose two kinds of extensions of (N,M)-BMTH. One is extended by using logarithmic flows, while the other is (2+1)D extension, which is corresponding to the toroidal Lie algebra slntor. At last, the relation of these two kinds of extensions also is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信