Pietro Stano , Davide Lazzarini , Silvio Santoro , Mario Mihalkov , Umberto Montanaro , Alessandro Vigliani , Antonella Ferrara , Miguel Dhaens , Aldo Sorniotti
{"title":"用于补偿路面不平造成的纵向加速度振荡的车载电动动力总成控制装置","authors":"Pietro Stano , Davide Lazzarini , Silvio Santoro , Mario Mihalkov , Umberto Montanaro , Alessandro Vigliani , Antonella Ferrara , Miguel Dhaens , Aldo Sorniotti","doi":"10.1016/j.mechmachtheory.2024.105759","DOIUrl":null,"url":null,"abstract":"<div><p>Road irregularities affect vehicle comfort by causing vertical and longitudinal acceleration oscillations. While the current ride comfort enhancement solutions are based on the compensation of the vertical acceleration of the sprung mass, the compensation of the longitudinal dynamics excited by road irregularities has been successfully explored only for in-wheel powertrains. The scope of this study is to demonstrate that also on-board electric powertrains with torsional dynamics of the half-shafts have the potential for effective compensation, thanks to the road profile preview. This paper presents a proof-of-concept nonlinear model predictive controller (NMPC) with road preview, which is assessed with a validated simulation model of an all-wheel drive electric vehicle. Three powertrain layouts are considered, with four in-wheel, four on-board, and two on-board electric machines. The control function is evaluated along multiple manoeuvres, through comfort-related key performance indicators (KPIs) that, for the four on-board layout along a road step test at 40 km/h, highlight >80% improvements. Finally, the real-time implementability of the algorithms is demonstrated, and preliminary experiments are conducted on an electric quadricycle prototype, with more than halved oscillations of the relevant variables.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"202 ","pages":"Article 105759"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0094114X24001861/pdfft?md5=bad61528704aed0cb166c0e0228b3d1f&pid=1-s2.0-S0094114X24001861-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On-board electric powertrain control for the compensation of the longitudinal acceleration oscillations caused by road irregularities\",\"authors\":\"Pietro Stano , Davide Lazzarini , Silvio Santoro , Mario Mihalkov , Umberto Montanaro , Alessandro Vigliani , Antonella Ferrara , Miguel Dhaens , Aldo Sorniotti\",\"doi\":\"10.1016/j.mechmachtheory.2024.105759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Road irregularities affect vehicle comfort by causing vertical and longitudinal acceleration oscillations. While the current ride comfort enhancement solutions are based on the compensation of the vertical acceleration of the sprung mass, the compensation of the longitudinal dynamics excited by road irregularities has been successfully explored only for in-wheel powertrains. The scope of this study is to demonstrate that also on-board electric powertrains with torsional dynamics of the half-shafts have the potential for effective compensation, thanks to the road profile preview. This paper presents a proof-of-concept nonlinear model predictive controller (NMPC) with road preview, which is assessed with a validated simulation model of an all-wheel drive electric vehicle. Three powertrain layouts are considered, with four in-wheel, four on-board, and two on-board electric machines. The control function is evaluated along multiple manoeuvres, through comfort-related key performance indicators (KPIs) that, for the four on-board layout along a road step test at 40 km/h, highlight >80% improvements. Finally, the real-time implementability of the algorithms is demonstrated, and preliminary experiments are conducted on an electric quadricycle prototype, with more than halved oscillations of the relevant variables.</p></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"202 \",\"pages\":\"Article 105759\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24001861/pdfft?md5=bad61528704aed0cb166c0e0228b3d1f&pid=1-s2.0-S0094114X24001861-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24001861\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001861","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
On-board electric powertrain control for the compensation of the longitudinal acceleration oscillations caused by road irregularities
Road irregularities affect vehicle comfort by causing vertical and longitudinal acceleration oscillations. While the current ride comfort enhancement solutions are based on the compensation of the vertical acceleration of the sprung mass, the compensation of the longitudinal dynamics excited by road irregularities has been successfully explored only for in-wheel powertrains. The scope of this study is to demonstrate that also on-board electric powertrains with torsional dynamics of the half-shafts have the potential for effective compensation, thanks to the road profile preview. This paper presents a proof-of-concept nonlinear model predictive controller (NMPC) with road preview, which is assessed with a validated simulation model of an all-wheel drive electric vehicle. Three powertrain layouts are considered, with four in-wheel, four on-board, and two on-board electric machines. The control function is evaluated along multiple manoeuvres, through comfort-related key performance indicators (KPIs) that, for the four on-board layout along a road step test at 40 km/h, highlight >80% improvements. Finally, the real-time implementability of the algorithms is demonstrated, and preliminary experiments are conducted on an electric quadricycle prototype, with more than halved oscillations of the relevant variables.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry