针对不锈钢耐腐蚀性的量子机器学习

Muhamad Akrom , Supriadi Rustad , Totok Sutojo , De Rosal Ignatius Moses Setiadi , Hermawan Kresno Dipojono , Ryo Maezono , Moses Solomon
{"title":"针对不锈钢耐腐蚀性的量子机器学习","authors":"Muhamad Akrom ,&nbsp;Supriadi Rustad ,&nbsp;Totok Sutojo ,&nbsp;De Rosal Ignatius Moses Setiadi ,&nbsp;Hermawan Kresno Dipojono ,&nbsp;Ryo Maezono ,&nbsp;Moses Solomon","doi":"10.1016/j.mtquan.2024.100013","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the efficacy of quantum machine learning (QML) models in predicting stainless steel corrosion behaviour. Using two datasets, the quantum support vector classifier (QSVC) outperformed classical models, achieving accuracies of 95.46 % and 94.80 % for Dataset A and Dataset B, respectively. The QSVC excelled in identifying complex corrosion classes and demonstrated robust performance across diverse environments. This QML approach accurately predicts corrosion without experimental testing, saving significant time and cost. Future research will aim to include more environmental variables and steel types, broadening the model's applicability.</p></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"3 ","pages":"Article 100013"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950257824000131/pdfft?md5=2dbe1782598f260eba88f00b35e603ac&pid=1-s2.0-S2950257824000131-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum machine learning for corrosion resistance in stainless steel\",\"authors\":\"Muhamad Akrom ,&nbsp;Supriadi Rustad ,&nbsp;Totok Sutojo ,&nbsp;De Rosal Ignatius Moses Setiadi ,&nbsp;Hermawan Kresno Dipojono ,&nbsp;Ryo Maezono ,&nbsp;Moses Solomon\",\"doi\":\"10.1016/j.mtquan.2024.100013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study evaluates the efficacy of quantum machine learning (QML) models in predicting stainless steel corrosion behaviour. Using two datasets, the quantum support vector classifier (QSVC) outperformed classical models, achieving accuracies of 95.46 % and 94.80 % for Dataset A and Dataset B, respectively. The QSVC excelled in identifying complex corrosion classes and demonstrated robust performance across diverse environments. This QML approach accurately predicts corrosion without experimental testing, saving significant time and cost. Future research will aim to include more environmental variables and steel types, broadening the model's applicability.</p></div>\",\"PeriodicalId\":100894,\"journal\":{\"name\":\"Materials Today Quantum\",\"volume\":\"3 \",\"pages\":\"Article 100013\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950257824000131/pdfft?md5=2dbe1782598f260eba88f00b35e603ac&pid=1-s2.0-S2950257824000131-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950257824000131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257824000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了量子机器学习(QML)模型在预测不锈钢腐蚀行为方面的功效。利用两个数据集,量子支持向量分类器(QSVC)的表现优于经典模型,数据集 A 和数据集 B 的准确率分别达到 95.46 % 和 94.80 %。QSVC 在识别复杂的腐蚀类别方面表现出色,并在不同环境下表现出稳健的性能。这种 QML 方法无需实验测试即可准确预测腐蚀,从而节省了大量时间和成本。未来的研究将致力于纳入更多的环境变量和钢材类型,从而扩大模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum machine learning for corrosion resistance in stainless steel

This study evaluates the efficacy of quantum machine learning (QML) models in predicting stainless steel corrosion behaviour. Using two datasets, the quantum support vector classifier (QSVC) outperformed classical models, achieving accuracies of 95.46 % and 94.80 % for Dataset A and Dataset B, respectively. The QSVC excelled in identifying complex corrosion classes and demonstrated robust performance across diverse environments. This QML approach accurately predicts corrosion without experimental testing, saving significant time and cost. Future research will aim to include more environmental variables and steel types, broadening the model's applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信