Lei Chen , Guixiang Zhu , Weichao Liang , Jie Cao , Yihan Chen
{"title":"用于旅行推荐的关键词增强型对比学习模型","authors":"Lei Chen , Guixiang Zhu , Weichao Liang , Jie Cao , Yihan Chen","doi":"10.1016/j.ipm.2024.103874","DOIUrl":null,"url":null,"abstract":"<div><p>Travel recommendation aims to infer travel intentions of users by analyzing their historical behaviors on Online Travel Agencies (OTAs). However, crucial keywords in clicked travel product titles, such as destination and itinerary duration, indicating tourists’ intentions, are often overlooked. Additionally, most previous studies only consider stable long-term user interests or temporary short-term user preferences, making the recommendation performance unreliable. To mitigate these constraints, this paper proposes a novel <strong>K</strong>eywords-enhanced <strong>C</strong>ontrastive <strong>L</strong>earning <strong>M</strong>odel (KCLM). KCLM simultaneously implements personalized travel recommendation and keywords generation tasks, integrating long-term and short-term user preferences within both tasks. Furthermore, we design two kinds of contrastive learning tasks for better user and travel product representation learning. The preference contrastive learning aims to bridge the gap between long-term and short-term user preferences. The multi-view contrastive learning focuses on modeling the coarse-grained commonality between clicked products and their keywords. Extensive experiments are conducted on two tourism datasets and a large-scale e-commerce dataset. The experimental results demonstrate that KCLM achieves substantial gains in both metrics compared to the best-performing baseline methods. Specifically, HR@20 improved by 5.79%–14.13%, MRR@20 improved by 6.57%–18.50%. Furthermore, to have an intuitive understanding of the keyword generation by the KCLM model, we provide a case study for several randomized examples.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"61 6","pages":"Article 103874"},"PeriodicalIF":7.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keywords-enhanced Contrastive Learning Model for travel recommendation\",\"authors\":\"Lei Chen , Guixiang Zhu , Weichao Liang , Jie Cao , Yihan Chen\",\"doi\":\"10.1016/j.ipm.2024.103874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Travel recommendation aims to infer travel intentions of users by analyzing their historical behaviors on Online Travel Agencies (OTAs). However, crucial keywords in clicked travel product titles, such as destination and itinerary duration, indicating tourists’ intentions, are often overlooked. Additionally, most previous studies only consider stable long-term user interests or temporary short-term user preferences, making the recommendation performance unreliable. To mitigate these constraints, this paper proposes a novel <strong>K</strong>eywords-enhanced <strong>C</strong>ontrastive <strong>L</strong>earning <strong>M</strong>odel (KCLM). KCLM simultaneously implements personalized travel recommendation and keywords generation tasks, integrating long-term and short-term user preferences within both tasks. Furthermore, we design two kinds of contrastive learning tasks for better user and travel product representation learning. The preference contrastive learning aims to bridge the gap between long-term and short-term user preferences. The multi-view contrastive learning focuses on modeling the coarse-grained commonality between clicked products and their keywords. Extensive experiments are conducted on two tourism datasets and a large-scale e-commerce dataset. The experimental results demonstrate that KCLM achieves substantial gains in both metrics compared to the best-performing baseline methods. Specifically, HR@20 improved by 5.79%–14.13%, MRR@20 improved by 6.57%–18.50%. Furthermore, to have an intuitive understanding of the keyword generation by the KCLM model, we provide a case study for several randomized examples.</p></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"61 6\",\"pages\":\"Article 103874\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324002334\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002334","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Keywords-enhanced Contrastive Learning Model for travel recommendation
Travel recommendation aims to infer travel intentions of users by analyzing their historical behaviors on Online Travel Agencies (OTAs). However, crucial keywords in clicked travel product titles, such as destination and itinerary duration, indicating tourists’ intentions, are often overlooked. Additionally, most previous studies only consider stable long-term user interests or temporary short-term user preferences, making the recommendation performance unreliable. To mitigate these constraints, this paper proposes a novel Keywords-enhanced Contrastive Learning Model (KCLM). KCLM simultaneously implements personalized travel recommendation and keywords generation tasks, integrating long-term and short-term user preferences within both tasks. Furthermore, we design two kinds of contrastive learning tasks for better user and travel product representation learning. The preference contrastive learning aims to bridge the gap between long-term and short-term user preferences. The multi-view contrastive learning focuses on modeling the coarse-grained commonality between clicked products and their keywords. Extensive experiments are conducted on two tourism datasets and a large-scale e-commerce dataset. The experimental results demonstrate that KCLM achieves substantial gains in both metrics compared to the best-performing baseline methods. Specifically, HR@20 improved by 5.79%–14.13%, MRR@20 improved by 6.57%–18.50%. Furthermore, to have an intuitive understanding of the keyword generation by the KCLM model, we provide a case study for several randomized examples.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.