Ahmed N. Elbattrawy , Ahmed H. Abd El-Malek , Sherif I. Rabia , Waheed K. Zahra
{"title":"认知环境反向散射通信中发射天线选择的安全性-可靠性权衡分析","authors":"Ahmed N. Elbattrawy , Ahmed H. Abd El-Malek , Sherif I. Rabia , Waheed K. Zahra","doi":"10.1016/j.peva.2024.102441","DOIUrl":null,"url":null,"abstract":"<div><p>Massive deployment of IoT devices raises the need for energy-efficient spectrum-efficient low-cost communications. Ambient backscatter communication (AmBC) technology provides a promising solution to achieve that. Moreover, incorporating AmBC with cognitive radio networks (CRNs) achieves better spectrum efficiency; however, this comes with performance drawbacks. In this work, we investigate the security and reliability performance of an underlay CRN with AmBC, where the backscattering device (BD) exploits the radio frequency (RF) signals of the secondary transmitter (ST), and both the ST and the BD share a common receiver. Different from previous work, we consider an ST with multiple antenna. The ST employs a transmit antenna selection (TAS) scheme to enhance the ST performance and overcome the performance degradation caused by the BD interference. TAS exploits multiple antenna diversity with lower hardware complexity and power consumption. Considering the Nakagami-<span><math><mi>m</mi></math></span> fading model, closed-form expressions are derived for the outage probability (OP) and intercept probability (IP) of both the ST and the BD transmissions at the legitimate receiver and the eavesdropper. Moreover, the asymptotic behavior of OPs and IPs is also investigated in the high signal-to-noise ratio regime and the high main-to-eavesdropper ratio regime, respectively. Monte Carlo simulations are performed to validate the derived closed-form expressions. Numerical results show that employing TAS enhances the ST and BD reliability performance by percentages up to 98% and 80%, respectively, at high primary user interference threshold values. Moreover, it results in a better security-reliability trade-off for the ST and the BD.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"166 ","pages":"Article 102441"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Security-reliability trade-off analysis for transmit antenna selection in cognitive ambient backscatter communications\",\"authors\":\"Ahmed N. Elbattrawy , Ahmed H. Abd El-Malek , Sherif I. Rabia , Waheed K. Zahra\",\"doi\":\"10.1016/j.peva.2024.102441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Massive deployment of IoT devices raises the need for energy-efficient spectrum-efficient low-cost communications. Ambient backscatter communication (AmBC) technology provides a promising solution to achieve that. Moreover, incorporating AmBC with cognitive radio networks (CRNs) achieves better spectrum efficiency; however, this comes with performance drawbacks. In this work, we investigate the security and reliability performance of an underlay CRN with AmBC, where the backscattering device (BD) exploits the radio frequency (RF) signals of the secondary transmitter (ST), and both the ST and the BD share a common receiver. Different from previous work, we consider an ST with multiple antenna. The ST employs a transmit antenna selection (TAS) scheme to enhance the ST performance and overcome the performance degradation caused by the BD interference. TAS exploits multiple antenna diversity with lower hardware complexity and power consumption. Considering the Nakagami-<span><math><mi>m</mi></math></span> fading model, closed-form expressions are derived for the outage probability (OP) and intercept probability (IP) of both the ST and the BD transmissions at the legitimate receiver and the eavesdropper. Moreover, the asymptotic behavior of OPs and IPs is also investigated in the high signal-to-noise ratio regime and the high main-to-eavesdropper ratio regime, respectively. Monte Carlo simulations are performed to validate the derived closed-form expressions. Numerical results show that employing TAS enhances the ST and BD reliability performance by percentages up to 98% and 80%, respectively, at high primary user interference threshold values. Moreover, it results in a better security-reliability trade-off for the ST and the BD.</p></div>\",\"PeriodicalId\":19964,\"journal\":{\"name\":\"Performance Evaluation\",\"volume\":\"166 \",\"pages\":\"Article 102441\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166531624000464\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531624000464","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
物联网设备的大规模部署提高了对高能效、低成本频谱通信的需求。环境反向散射通信(AmBC)技术为实现这一目标提供了一种前景广阔的解决方案。此外,将 AmBC 与认知无线电网络(CRN)结合可实现更高的频谱效率,但同时也存在性能缺陷。在这项工作中,我们研究了采用 AmBC 的底层 CRN 的安全性和可靠性能,其中后向散射设备(BD)利用了副发射机(ST)的射频(RF)信号,而 ST 和 BD 共享一个共同的接收器。与之前的研究不同,我们考虑的是带有多天线的 ST。ST 采用发射天线选择(TAS)方案来提高 ST 性能,克服 BD 干扰造成的性能下降。TAS 利用多天线分集,降低了硬件复杂度和功耗。考虑到 Nakagami-m fading 模型,得出了 ST 和 BD 传输在合法接收器和窃听器处的中断概率 (OP) 和截获概率 (IP) 的闭式表达式。此外,还分别研究了高信噪比机制和高主-窃听器比机制下 OP 和 IP 的渐近行为。蒙特卡罗模拟验证了得出的闭式表达式。数值结果表明,在主用户干扰阈值较高的情况下,采用 TAS 可将 ST 和 BD 可靠性能分别提高 98% 和 80%。此外,它还为 ST 和 BD 带来了更好的安全性-可靠性权衡。
Security-reliability trade-off analysis for transmit antenna selection in cognitive ambient backscatter communications
Massive deployment of IoT devices raises the need for energy-efficient spectrum-efficient low-cost communications. Ambient backscatter communication (AmBC) technology provides a promising solution to achieve that. Moreover, incorporating AmBC with cognitive radio networks (CRNs) achieves better spectrum efficiency; however, this comes with performance drawbacks. In this work, we investigate the security and reliability performance of an underlay CRN with AmBC, where the backscattering device (BD) exploits the radio frequency (RF) signals of the secondary transmitter (ST), and both the ST and the BD share a common receiver. Different from previous work, we consider an ST with multiple antenna. The ST employs a transmit antenna selection (TAS) scheme to enhance the ST performance and overcome the performance degradation caused by the BD interference. TAS exploits multiple antenna diversity with lower hardware complexity and power consumption. Considering the Nakagami- fading model, closed-form expressions are derived for the outage probability (OP) and intercept probability (IP) of both the ST and the BD transmissions at the legitimate receiver and the eavesdropper. Moreover, the asymptotic behavior of OPs and IPs is also investigated in the high signal-to-noise ratio regime and the high main-to-eavesdropper ratio regime, respectively. Monte Carlo simulations are performed to validate the derived closed-form expressions. Numerical results show that employing TAS enhances the ST and BD reliability performance by percentages up to 98% and 80%, respectively, at high primary user interference threshold values. Moreover, it results in a better security-reliability trade-off for the ST and the BD.
期刊介绍:
Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions:
-Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques
-Provide new insights into the performance of computing and communication systems
-Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools.
More specifically, common application areas of interest include the performance of:
-Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management)
-System architecture, design and implementation
-Cognitive radio
-VANETs
-Social networks and media
-Energy efficient ICT
-Energy harvesting
-Data centers
-Data centric networks
-System reliability
-System tuning and capacity planning
-Wireless and sensor networks
-Autonomic and self-organizing systems
-Embedded systems
-Network science