Zifeng Xu , Zhe Wang , Chaojia Gao , Keqi Zhang , Jie Lv , Jie Wang , Lilan Liu
{"title":"基于图卷积神经网络的迁移学习驱动的离心泵故障诊断数字孪生系统","authors":"Zifeng Xu , Zhe Wang , Chaojia Gao , Keqi Zhang , Jie Lv , Jie Wang , Lilan Liu","doi":"10.1016/j.compind.2024.104155","DOIUrl":null,"url":null,"abstract":"<div><p>In industrial sectors such as shipping, chemical processing, and energy production, centrifugal pumps often experience failures due to harsh operational environments, making it challenging to accurately identify fault types. Traditional fault diagnosis methods, which heavily rely on existing fault datasets, suffer from limited generalization capabilities, especially when substantial labeled and specific fault sample data are lacking. This paper proposes a novel fault diagnosis approach for centrifugal pumps, utilizing a digital twin (DT) framework powered by a graph transfer learning model to address this issue. Firstly, a high-fidelity DT model is constructed to simulate the flow-induced vibration response of the impeller under different health states to enrich the type and scale of the dataset. Secondly, a graph convolutional neural networks (GCN) model is constructed to learn the knowledge of simulation data, and the Wasserstein distance between simulation data and measured data is optimized for adversarial domain adaptation, thereby achieving efficient cross-domain fault diagnosis. Experimental results demonstrate that the proposed algorithm delivers effective fault diagnosis with minimal prior knowledge and outperforms comparable models. Furthermore, the DT system developed using the proposed model enhances the operational reliability of centrifugal pumps, reduces maintenance costs, and presents an innovative application of DT technology in industrial fault diagnosis.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"163 ","pages":"Article 104155"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A digital twin system for centrifugal pump fault diagnosis driven by transfer learning based on graph convolutional neural networks\",\"authors\":\"Zifeng Xu , Zhe Wang , Chaojia Gao , Keqi Zhang , Jie Lv , Jie Wang , Lilan Liu\",\"doi\":\"10.1016/j.compind.2024.104155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In industrial sectors such as shipping, chemical processing, and energy production, centrifugal pumps often experience failures due to harsh operational environments, making it challenging to accurately identify fault types. Traditional fault diagnosis methods, which heavily rely on existing fault datasets, suffer from limited generalization capabilities, especially when substantial labeled and specific fault sample data are lacking. This paper proposes a novel fault diagnosis approach for centrifugal pumps, utilizing a digital twin (DT) framework powered by a graph transfer learning model to address this issue. Firstly, a high-fidelity DT model is constructed to simulate the flow-induced vibration response of the impeller under different health states to enrich the type and scale of the dataset. Secondly, a graph convolutional neural networks (GCN) model is constructed to learn the knowledge of simulation data, and the Wasserstein distance between simulation data and measured data is optimized for adversarial domain adaptation, thereby achieving efficient cross-domain fault diagnosis. Experimental results demonstrate that the proposed algorithm delivers effective fault diagnosis with minimal prior knowledge and outperforms comparable models. Furthermore, the DT system developed using the proposed model enhances the operational reliability of centrifugal pumps, reduces maintenance costs, and presents an innovative application of DT technology in industrial fault diagnosis.</p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"163 \",\"pages\":\"Article 104155\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361524000836\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524000836","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A digital twin system for centrifugal pump fault diagnosis driven by transfer learning based on graph convolutional neural networks
In industrial sectors such as shipping, chemical processing, and energy production, centrifugal pumps often experience failures due to harsh operational environments, making it challenging to accurately identify fault types. Traditional fault diagnosis methods, which heavily rely on existing fault datasets, suffer from limited generalization capabilities, especially when substantial labeled and specific fault sample data are lacking. This paper proposes a novel fault diagnosis approach for centrifugal pumps, utilizing a digital twin (DT) framework powered by a graph transfer learning model to address this issue. Firstly, a high-fidelity DT model is constructed to simulate the flow-induced vibration response of the impeller under different health states to enrich the type and scale of the dataset. Secondly, a graph convolutional neural networks (GCN) model is constructed to learn the knowledge of simulation data, and the Wasserstein distance between simulation data and measured data is optimized for adversarial domain adaptation, thereby achieving efficient cross-domain fault diagnosis. Experimental results demonstrate that the proposed algorithm delivers effective fault diagnosis with minimal prior knowledge and outperforms comparable models. Furthermore, the DT system developed using the proposed model enhances the operational reliability of centrifugal pumps, reduces maintenance costs, and presents an innovative application of DT technology in industrial fault diagnosis.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.