Tao Xing , Shuai Li , Shuli Tang , Yu Huang , Gaoyuan Liu , Yuetian Yan , Dingjiang Liu , Shunhai Wang , Li Zhi , Mohammed Shameem , Ning Li
{"title":"通过分析阴离子交换色谱法和基于 LC-MS 的肽图谱揭示热应力条件下 AAV1 和 AAV8 不同的化学降解途径","authors":"Tao Xing , Shuai Li , Shuli Tang , Yu Huang , Gaoyuan Liu , Yuetian Yan , Dingjiang Liu , Shunhai Wang , Li Zhi , Mohammed Shameem , Ning Li","doi":"10.1016/j.jpba.2024.116452","DOIUrl":null,"url":null,"abstract":"<div><p>Adeno-associated virus (AAV)-based gene therapy is experiencing a rapid growth in the field of medicine and holds great promise in combating a wide range of human diseases. For successful development of AAV-based products, comprehensive thermal stability studies are often required to establish storage conditions and shelf life. However, as a relatively new modality, limited studies have been reported to elucidate the chemical degradation pathways of AAV products under thermal stress conditions. In this study, we first presented an intriguing difference in charge profile shift between thermally stressed AAV8 and AAV1 capsids when analyzed by anion exchange chromatography. Subsequently, a novel and robust peptide mapping protocol was developed and applied to elucidate the underlying chemical degradation pathways of thermally stressed AAV8 and AAV1. Compared to the conventional therapeutic proteins, the unique structure of AAV capsids also led to some key differences in how modifications at specific sites may impact the overall charge properties. Finally, despite the high sequency identity, the analysis revealed that the opposite charge profile shifts between thermally stressed AAV8 and AAV1 could be mainly attributed to a single modification unique to each serotype.</p></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"251 ","pages":"Article 116452"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0731708524004928/pdfft?md5=54753f221f2d67530f2c1b6c4cc7d0bd&pid=1-s2.0-S0731708524004928-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Distinct chemical degradation pathways of AAV1 and AAV8 under thermal stress conditions revealed by analytical anion exchange chromatography and LC-MS-based peptide mapping\",\"authors\":\"Tao Xing , Shuai Li , Shuli Tang , Yu Huang , Gaoyuan Liu , Yuetian Yan , Dingjiang Liu , Shunhai Wang , Li Zhi , Mohammed Shameem , Ning Li\",\"doi\":\"10.1016/j.jpba.2024.116452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adeno-associated virus (AAV)-based gene therapy is experiencing a rapid growth in the field of medicine and holds great promise in combating a wide range of human diseases. For successful development of AAV-based products, comprehensive thermal stability studies are often required to establish storage conditions and shelf life. However, as a relatively new modality, limited studies have been reported to elucidate the chemical degradation pathways of AAV products under thermal stress conditions. In this study, we first presented an intriguing difference in charge profile shift between thermally stressed AAV8 and AAV1 capsids when analyzed by anion exchange chromatography. Subsequently, a novel and robust peptide mapping protocol was developed and applied to elucidate the underlying chemical degradation pathways of thermally stressed AAV8 and AAV1. Compared to the conventional therapeutic proteins, the unique structure of AAV capsids also led to some key differences in how modifications at specific sites may impact the overall charge properties. Finally, despite the high sequency identity, the analysis revealed that the opposite charge profile shifts between thermally stressed AAV8 and AAV1 could be mainly attributed to a single modification unique to each serotype.</p></div>\",\"PeriodicalId\":16685,\"journal\":{\"name\":\"Journal of pharmaceutical and biomedical analysis\",\"volume\":\"251 \",\"pages\":\"Article 116452\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0731708524004928/pdfft?md5=54753f221f2d67530f2c1b6c4cc7d0bd&pid=1-s2.0-S0731708524004928-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical and biomedical analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0731708524004928\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708524004928","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Distinct chemical degradation pathways of AAV1 and AAV8 under thermal stress conditions revealed by analytical anion exchange chromatography and LC-MS-based peptide mapping
Adeno-associated virus (AAV)-based gene therapy is experiencing a rapid growth in the field of medicine and holds great promise in combating a wide range of human diseases. For successful development of AAV-based products, comprehensive thermal stability studies are often required to establish storage conditions and shelf life. However, as a relatively new modality, limited studies have been reported to elucidate the chemical degradation pathways of AAV products under thermal stress conditions. In this study, we first presented an intriguing difference in charge profile shift between thermally stressed AAV8 and AAV1 capsids when analyzed by anion exchange chromatography. Subsequently, a novel and robust peptide mapping protocol was developed and applied to elucidate the underlying chemical degradation pathways of thermally stressed AAV8 and AAV1. Compared to the conventional therapeutic proteins, the unique structure of AAV capsids also led to some key differences in how modifications at specific sites may impact the overall charge properties. Finally, despite the high sequency identity, the analysis revealed that the opposite charge profile shifts between thermally stressed AAV8 and AAV1 could be mainly attributed to a single modification unique to each serotype.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.