Tao Xing , Shuai Li , Shuli Tang , Yu Huang , Gaoyuan Liu , Yuetian Yan , Dingjiang Liu , Shunhai Wang , Li Zhi , Mohammed Shameem , Ning Li
{"title":"通过分析阴离子交换色谱法和基于 LC-MS 的肽图谱揭示热应力条件下 AAV1 和 AAV8 不同的化学降解途径","authors":"Tao Xing , Shuai Li , Shuli Tang , Yu Huang , Gaoyuan Liu , Yuetian Yan , Dingjiang Liu , Shunhai Wang , Li Zhi , Mohammed Shameem , Ning Li","doi":"10.1016/j.jpba.2024.116452","DOIUrl":null,"url":null,"abstract":"<div><p>Adeno-associated virus (AAV)-based gene therapy is experiencing a rapid growth in the field of medicine and holds great promise in combating a wide range of human diseases. For successful development of AAV-based products, comprehensive thermal stability studies are often required to establish storage conditions and shelf life. However, as a relatively new modality, limited studies have been reported to elucidate the chemical degradation pathways of AAV products under thermal stress conditions. In this study, we first presented an intriguing difference in charge profile shift between thermally stressed AAV8 and AAV1 capsids when analyzed by anion exchange chromatography. Subsequently, a novel and robust peptide mapping protocol was developed and applied to elucidate the underlying chemical degradation pathways of thermally stressed AAV8 and AAV1. Compared to the conventional therapeutic proteins, the unique structure of AAV capsids also led to some key differences in how modifications at specific sites may impact the overall charge properties. Finally, despite the high sequency identity, the analysis revealed that the opposite charge profile shifts between thermally stressed AAV8 and AAV1 could be mainly attributed to a single modification unique to each serotype.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0731708524004928/pdfft?md5=54753f221f2d67530f2c1b6c4cc7d0bd&pid=1-s2.0-S0731708524004928-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Distinct chemical degradation pathways of AAV1 and AAV8 under thermal stress conditions revealed by analytical anion exchange chromatography and LC-MS-based peptide mapping\",\"authors\":\"Tao Xing , Shuai Li , Shuli Tang , Yu Huang , Gaoyuan Liu , Yuetian Yan , Dingjiang Liu , Shunhai Wang , Li Zhi , Mohammed Shameem , Ning Li\",\"doi\":\"10.1016/j.jpba.2024.116452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adeno-associated virus (AAV)-based gene therapy is experiencing a rapid growth in the field of medicine and holds great promise in combating a wide range of human diseases. For successful development of AAV-based products, comprehensive thermal stability studies are often required to establish storage conditions and shelf life. However, as a relatively new modality, limited studies have been reported to elucidate the chemical degradation pathways of AAV products under thermal stress conditions. In this study, we first presented an intriguing difference in charge profile shift between thermally stressed AAV8 and AAV1 capsids when analyzed by anion exchange chromatography. Subsequently, a novel and robust peptide mapping protocol was developed and applied to elucidate the underlying chemical degradation pathways of thermally stressed AAV8 and AAV1. Compared to the conventional therapeutic proteins, the unique structure of AAV capsids also led to some key differences in how modifications at specific sites may impact the overall charge properties. Finally, despite the high sequency identity, the analysis revealed that the opposite charge profile shifts between thermally stressed AAV8 and AAV1 could be mainly attributed to a single modification unique to each serotype.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0731708524004928/pdfft?md5=54753f221f2d67530f2c1b6c4cc7d0bd&pid=1-s2.0-S0731708524004928-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0731708524004928\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708524004928","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Distinct chemical degradation pathways of AAV1 and AAV8 under thermal stress conditions revealed by analytical anion exchange chromatography and LC-MS-based peptide mapping
Adeno-associated virus (AAV)-based gene therapy is experiencing a rapid growth in the field of medicine and holds great promise in combating a wide range of human diseases. For successful development of AAV-based products, comprehensive thermal stability studies are often required to establish storage conditions and shelf life. However, as a relatively new modality, limited studies have been reported to elucidate the chemical degradation pathways of AAV products under thermal stress conditions. In this study, we first presented an intriguing difference in charge profile shift between thermally stressed AAV8 and AAV1 capsids when analyzed by anion exchange chromatography. Subsequently, a novel and robust peptide mapping protocol was developed and applied to elucidate the underlying chemical degradation pathways of thermally stressed AAV8 and AAV1. Compared to the conventional therapeutic proteins, the unique structure of AAV capsids also led to some key differences in how modifications at specific sites may impact the overall charge properties. Finally, despite the high sequency identity, the analysis revealed that the opposite charge profile shifts between thermally stressed AAV8 and AAV1 could be mainly attributed to a single modification unique to each serotype.