对 COVID-19 信息学术会议的公开出版回应。

CEUR workshop proceedings Pub Date : 2021-09-01
Halie M Rando, Simina M Boca, Lucy D'Agostino McGowan, Daniel S Himmelstein, Michael P Robson, Vincent Rubinetti, Ryan Velazquez, Casey S Greene, Anthony Gitter
{"title":"对 COVID-19 信息学术会议的公开出版回应。","authors":"Halie M Rando, Simina M Boca, Lucy D'Agostino McGowan, Daniel S Himmelstein, Michael P Robson, Vincent Rubinetti, Ryan Velazquez, Casey S Greene, Anthony Gitter","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic catalyzed the rapid dissemination of papers and preprints investigating the disease and its associated virus, SARS-CoV-2. The multifaceted nature of COVID-19 demands a multidisciplinary approach, but the urgency of the crisis combined with the need for social distancing measures present unique challenges to collaborative science. We applied a massive online open publishing approach to this problem using Manubot. Through GitHub, collaborators summarized and critiqued COVID-19 literature, creating a review manuscript. Manubot automatically compiled citation information for referenced preprints, journal publications, websites, and clinical trials. Continuous integration workflows retrieved up-to-date data from online sources nightly, regenerating some of the manuscript's figures and statistics. Manubot rendered the manuscript into PDF, HTML, LaTeX, and DOCX outputs, immediately updating the version available online upon the integration of new content. Through this effort, we organized over 50 scientists from a range of backgrounds who evaluated over 1,500 sources and developed seven literature reviews. While many efforts from the computational community have focused on mining COVID-19 literature, our project illustrates the power of open publishing to organize both technical and non-technical scientists to aggregate and disseminate information in response to an evolving crisis.</p>","PeriodicalId":72554,"journal":{"name":"CEUR workshop proceedings","volume":"2976 ","pages":"29-38"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093051/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Open-Publishing Response to the COVID-19 Infodemic.\",\"authors\":\"Halie M Rando, Simina M Boca, Lucy D'Agostino McGowan, Daniel S Himmelstein, Michael P Robson, Vincent Rubinetti, Ryan Velazquez, Casey S Greene, Anthony Gitter\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic catalyzed the rapid dissemination of papers and preprints investigating the disease and its associated virus, SARS-CoV-2. The multifaceted nature of COVID-19 demands a multidisciplinary approach, but the urgency of the crisis combined with the need for social distancing measures present unique challenges to collaborative science. We applied a massive online open publishing approach to this problem using Manubot. Through GitHub, collaborators summarized and critiqued COVID-19 literature, creating a review manuscript. Manubot automatically compiled citation information for referenced preprints, journal publications, websites, and clinical trials. Continuous integration workflows retrieved up-to-date data from online sources nightly, regenerating some of the manuscript's figures and statistics. Manubot rendered the manuscript into PDF, HTML, LaTeX, and DOCX outputs, immediately updating the version available online upon the integration of new content. Through this effort, we organized over 50 scientists from a range of backgrounds who evaluated over 1,500 sources and developed seven literature reviews. While many efforts from the computational community have focused on mining COVID-19 literature, our project illustrates the power of open publishing to organize both technical and non-technical scientists to aggregate and disseminate information in response to an evolving crisis.</p>\",\"PeriodicalId\":72554,\"journal\":{\"name\":\"CEUR workshop proceedings\",\"volume\":\"2976 \",\"pages\":\"29-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9093051/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEUR workshop proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEUR workshop proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19 大流行促进了研究该疾病及其相关病毒 SARS-CoV-2 的论文和预印本的快速传播。COVID-19 的多面性要求采用多学科方法,但危机的紧迫性和社会疏远措施的必要性给合作科学带来了独特的挑战。我们利用 Manubot 采用大规模在线开放出版的方法来解决这一问题。通过 GitHub,合作者对 COVID-19 文献进行了总结和评论,并撰写了评论手稿。Manubot 自动编译参考预印本、期刊出版物、网站和临床试验的引用信息。持续集成工作流每晚从在线资源中检索最新数据,重新生成手稿中的部分数字和统计数据。Manubot 将手稿渲染为 PDF、HTML、LaTeX 和 DOCX 输出,并在整合新内容后立即更新在线版本。通过这项工作,我们组织了 50 多位不同背景的科学家,他们评估了 1,500 多份资料,编写了 7 篇文献综述。虽然计算界的许多工作都集中在挖掘 COVID-19 文献上,但我们的项目说明了开放出版的力量,它可以组织技术和非技术科学家汇总和传播信息,以应对不断演变的危机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Open-Publishing Response to the COVID-19 Infodemic.

The COVID-19 pandemic catalyzed the rapid dissemination of papers and preprints investigating the disease and its associated virus, SARS-CoV-2. The multifaceted nature of COVID-19 demands a multidisciplinary approach, but the urgency of the crisis combined with the need for social distancing measures present unique challenges to collaborative science. We applied a massive online open publishing approach to this problem using Manubot. Through GitHub, collaborators summarized and critiqued COVID-19 literature, creating a review manuscript. Manubot automatically compiled citation information for referenced preprints, journal publications, websites, and clinical trials. Continuous integration workflows retrieved up-to-date data from online sources nightly, regenerating some of the manuscript's figures and statistics. Manubot rendered the manuscript into PDF, HTML, LaTeX, and DOCX outputs, immediately updating the version available online upon the integration of new content. Through this effort, we organized over 50 scientists from a range of backgrounds who evaluated over 1,500 sources and developed seven literature reviews. While many efforts from the computational community have focused on mining COVID-19 literature, our project illustrates the power of open publishing to organize both technical and non-technical scientists to aggregate and disseminate information in response to an evolving crisis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信