Xavier Navarro-Sune, Mathieu Raux, Anna L Hudson, Thomas Similowski, Mario Chavez
{"title":"周期频率内容脑电图分析改进了呼吸相关皮层活动的评估。","authors":"Xavier Navarro-Sune, Mathieu Raux, Anna L Hudson, Thomas Similowski, Mario Chavez","doi":"10.1088/1361-6579/ad74d7","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Time-frequency (T-F) analysis of electroencephalographic (EEG) is a common technique to characterise spectral changes in neural activity. This study explores the limitations of utilizing conventional spectral techniques in examining cyclic event-related cortical activities due to challenges, including high inter-trial variability.<i>Approach</i>. Introducing the cycle-frequency (C-F) analysis, we aim to enhance the evaluation of cycle-locked respiratory events. For synthetic EEG that mimicked cycle-locked pre-motor activity, C-F had more accurate frequency and time localization compared to conventional T-F analysis, even for a significantly reduced number of trials and a variability of breathing rhythm.<i>Main results</i>. Preliminary validations using real EEG data during both unloaded breathing and loaded breathing (that evokes pre-motor activity) suggest potential benefits of using the C-F method, particularly in normalizing time units to cyclic activity phases and refining baseline placement and duration.<i>Significance</i>. The proposed approach could provide new insights for the study of rhythmic neural activities, complementing T-F analysis.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycle-frequency content EEG analysis improves the assessment of respiratory-related cortical activity.\",\"authors\":\"Xavier Navarro-Sune, Mathieu Raux, Anna L Hudson, Thomas Similowski, Mario Chavez\",\"doi\":\"10.1088/1361-6579/ad74d7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Time-frequency (T-F) analysis of electroencephalographic (EEG) is a common technique to characterise spectral changes in neural activity. This study explores the limitations of utilizing conventional spectral techniques in examining cyclic event-related cortical activities due to challenges, including high inter-trial variability.<i>Approach</i>. Introducing the cycle-frequency (C-F) analysis, we aim to enhance the evaluation of cycle-locked respiratory events. For synthetic EEG that mimicked cycle-locked pre-motor activity, C-F had more accurate frequency and time localization compared to conventional T-F analysis, even for a significantly reduced number of trials and a variability of breathing rhythm.<i>Main results</i>. Preliminary validations using real EEG data during both unloaded breathing and loaded breathing (that evokes pre-motor activity) suggest potential benefits of using the C-F method, particularly in normalizing time units to cyclic activity phases and refining baseline placement and duration.<i>Significance</i>. The proposed approach could provide new insights for the study of rhythmic neural activities, complementing T-F analysis.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad74d7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad74d7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Cycle-frequency content EEG analysis improves the assessment of respiratory-related cortical activity.
Objective. Time-frequency (T-F) analysis of electroencephalographic (EEG) is a common technique to characterise spectral changes in neural activity. This study explores the limitations of utilizing conventional spectral techniques in examining cyclic event-related cortical activities due to challenges, including high inter-trial variability.Approach. Introducing the cycle-frequency (C-F) analysis, we aim to enhance the evaluation of cycle-locked respiratory events. For synthetic EEG that mimicked cycle-locked pre-motor activity, C-F had more accurate frequency and time localization compared to conventional T-F analysis, even for a significantly reduced number of trials and a variability of breathing rhythm.Main results. Preliminary validations using real EEG data during both unloaded breathing and loaded breathing (that evokes pre-motor activity) suggest potential benefits of using the C-F method, particularly in normalizing time units to cyclic activity phases and refining baseline placement and duration.Significance. The proposed approach could provide new insights for the study of rhythmic neural activities, complementing T-F analysis.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.