Hannah Van Wyk, Gwenyth O Lee, Robert J Schillinger, Christine A Edwards, Douglas J Morrison, Andrew F Brouwer
{"title":"利用 13C 蔗糖呼气试验检测蔗糖酶-异麦芽糖酶抑制的经验分类器和基于模型的分类器的性能。","authors":"Hannah Van Wyk, Gwenyth O Lee, Robert J Schillinger, Christine A Edwards, Douglas J Morrison, Andrew F Brouwer","doi":"10.1088/1752-7163/ad748d","DOIUrl":null,"url":null,"abstract":"<p><p>The<sup>13</sup>C-sucrose breath test (<sup>13</sup>C-SBT) has been proposed to estimate sucrase-isomaltase (SIM) activity and is a promising test for SIM deficiency, which can cause gastrointestinal symptoms, and for intestinal mucosal damage caused by gut dysfunction or chemotherapy. We previously showed how various summary measures of the<sup>13</sup>C-SBT breath curve reflect SIM inhibition. However, it is uncertain how the performance of these classifiers is affected by test duration. We leveraged<sup>13</sup>C-SBT data from a cross-over study in 16 adults who received 0, 100, and 750 mg of Reducose, an SIM inhibitor. We evaluated the performance of a pharmacokinetic-model-based classifier,ρ, and three empirical classifiers (cumulative percent dose recovered at 90 min (cPDR90), time to 50% dose recovered, and time to peak dose recovery rate), as a function of test duration using receiver operating characteristic (ROC) curves. We also assessed the sensitivity, specificity, and accuracy of consensus classifiers. Test durations of less than 2 h generally failed to accurately predict later breath curve dynamics. The cPDR90 classifier had the highest ROC area-under-the-curve and, by design, was robust to shorter test durations. For detecting mild SIM inhibition,ρhad a higher sensitivity. We recommend<sup>13</sup>C-SBT tests run for at least a 2 h duration. Although cPDR90 was the classifier with highest accuracy and robustness to test duration in this application, concerns remain about its sensitivity to misspecification of the CO<sub>2</sub>production rate. More research is needed to assess these classifiers in target populations.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385691/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance of empirical and model-based classifiers for detecting sucrase-isomaltase inhibition using the<sup>13</sup>C-sucrose breath test.\",\"authors\":\"Hannah Van Wyk, Gwenyth O Lee, Robert J Schillinger, Christine A Edwards, Douglas J Morrison, Andrew F Brouwer\",\"doi\":\"10.1088/1752-7163/ad748d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The<sup>13</sup>C-sucrose breath test (<sup>13</sup>C-SBT) has been proposed to estimate sucrase-isomaltase (SIM) activity and is a promising test for SIM deficiency, which can cause gastrointestinal symptoms, and for intestinal mucosal damage caused by gut dysfunction or chemotherapy. We previously showed how various summary measures of the<sup>13</sup>C-SBT breath curve reflect SIM inhibition. However, it is uncertain how the performance of these classifiers is affected by test duration. We leveraged<sup>13</sup>C-SBT data from a cross-over study in 16 adults who received 0, 100, and 750 mg of Reducose, an SIM inhibitor. We evaluated the performance of a pharmacokinetic-model-based classifier,ρ, and three empirical classifiers (cumulative percent dose recovered at 90 min (cPDR90), time to 50% dose recovered, and time to peak dose recovery rate), as a function of test duration using receiver operating characteristic (ROC) curves. We also assessed the sensitivity, specificity, and accuracy of consensus classifiers. Test durations of less than 2 h generally failed to accurately predict later breath curve dynamics. The cPDR90 classifier had the highest ROC area-under-the-curve and, by design, was robust to shorter test durations. For detecting mild SIM inhibition,ρhad a higher sensitivity. We recommend<sup>13</sup>C-SBT tests run for at least a 2 h duration. Although cPDR90 was the classifier with highest accuracy and robustness to test duration in this application, concerns remain about its sensitivity to misspecification of the CO<sub>2</sub>production rate. More research is needed to assess these classifiers in target populations.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385691/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad748d\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad748d","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Performance of empirical and model-based classifiers for detecting sucrase-isomaltase inhibition using the13C-sucrose breath test.
The13C-sucrose breath test (13C-SBT) has been proposed to estimate sucrase-isomaltase (SIM) activity and is a promising test for SIM deficiency, which can cause gastrointestinal symptoms, and for intestinal mucosal damage caused by gut dysfunction or chemotherapy. We previously showed how various summary measures of the13C-SBT breath curve reflect SIM inhibition. However, it is uncertain how the performance of these classifiers is affected by test duration. We leveraged13C-SBT data from a cross-over study in 16 adults who received 0, 100, and 750 mg of Reducose, an SIM inhibitor. We evaluated the performance of a pharmacokinetic-model-based classifier,ρ, and three empirical classifiers (cumulative percent dose recovered at 90 min (cPDR90), time to 50% dose recovered, and time to peak dose recovery rate), as a function of test duration using receiver operating characteristic (ROC) curves. We also assessed the sensitivity, specificity, and accuracy of consensus classifiers. Test durations of less than 2 h generally failed to accurately predict later breath curve dynamics. The cPDR90 classifier had the highest ROC area-under-the-curve and, by design, was robust to shorter test durations. For detecting mild SIM inhibition,ρhad a higher sensitivity. We recommend13C-SBT tests run for at least a 2 h duration. Although cPDR90 was the classifier with highest accuracy and robustness to test duration in this application, concerns remain about its sensitivity to misspecification of the CO2production rate. More research is needed to assess these classifiers in target populations.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.