谷胱甘肽转移酶ω1-1(GSTO1-1)可通过外泌体途径实现顺铂抗药性的细胞间转移。

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"谷胱甘肽转移酶ω1-1(GSTO1-1)可通过外泌体途径实现顺铂抗药性的细胞间转移。","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.032","DOIUrl":null,"url":null,"abstract":"<div><p>Glutathione transferase omega-1-1 (GSTO1-1) is a member of the glutathione transferase superfamily (GSTs) involved in the modulation of cell survival, proliferation and metabolism. Increased levels of GSTO1-1 have been associated with cancer progression and chemoresistance in different types of cancer cells, possibly supported by the post-traslational regulation of some major prosurvival pathways regulated by the enzyme. Our data demonstrate for the first time that GSTO1-1 can be released by cancer cells through the exosomal route and transferred to GSTO1-1 knock-out cells, this resulting in an increased resistance against cisplatin toxicity in recipient cells. The use of the exosomal route to transfer the regulatory competences of GSTO1-1 could be a further element supporting its role in neoplastic progression.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glutathione transferase omega 1-1 (GSTO1-1) can effect the inter-cell transfer of cisplatin resistance through the exosomal route\",\"authors\":\"\",\"doi\":\"10.1016/j.freeradbiomed.2024.08.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glutathione transferase omega-1-1 (GSTO1-1) is a member of the glutathione transferase superfamily (GSTs) involved in the modulation of cell survival, proliferation and metabolism. Increased levels of GSTO1-1 have been associated with cancer progression and chemoresistance in different types of cancer cells, possibly supported by the post-traslational regulation of some major prosurvival pathways regulated by the enzyme. Our data demonstrate for the first time that GSTO1-1 can be released by cancer cells through the exosomal route and transferred to GSTO1-1 knock-out cells, this resulting in an increased resistance against cisplatin toxicity in recipient cells. The use of the exosomal route to transfer the regulatory competences of GSTO1-1 could be a further element supporting its role in neoplastic progression.</p></div>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891584924006269\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924006269","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

谷胱甘肽转移酶Ω-1-1(GSTO1-1)是谷胱甘肽转移酶超家族(GSTs)的成员之一,参与调节细胞的存活、增殖和代谢。在不同类型的癌细胞中,GSTO1-1 水平的升高与癌症进展和化疗抗药性有关,这可能是受该酶调控的一些主要促生存通路的后特异性调控的结果。我们的数据首次证明,癌细胞可通过外泌体途径释放 GSTO1-1,并将其转移到 GSTO1-1 基因敲除细胞中,从而增强受体细胞对顺铂毒性的抵抗力。利用外泌体途径转移 GSTO1-1 的调控能力可能是支持其在肿瘤进展中发挥作用的另一个因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Glutathione transferase omega 1-1 (GSTO1-1) can effect the inter-cell transfer of cisplatin resistance through the exosomal route

Glutathione transferase omega 1-1 (GSTO1-1) can effect the inter-cell transfer of cisplatin resistance through the exosomal route

Glutathione transferase omega-1-1 (GSTO1-1) is a member of the glutathione transferase superfamily (GSTs) involved in the modulation of cell survival, proliferation and metabolism. Increased levels of GSTO1-1 have been associated with cancer progression and chemoresistance in different types of cancer cells, possibly supported by the post-traslational regulation of some major prosurvival pathways regulated by the enzyme. Our data demonstrate for the first time that GSTO1-1 can be released by cancer cells through the exosomal route and transferred to GSTO1-1 knock-out cells, this resulting in an increased resistance against cisplatin toxicity in recipient cells. The use of the exosomal route to transfer the regulatory competences of GSTO1-1 could be a further element supporting its role in neoplastic progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信