{"title":"孕期摄入多物种益生菌可调节后代的神经发育轨迹:以精准微生物干预为目标。","authors":"","doi":"10.1016/j.bbi.2024.08.050","DOIUrl":null,"url":null,"abstract":"<div><p>Recent research highlights the pivotal role of the maternal gut microbiome during pregnancy in shaping offspring neurodevelopment. In this study, we investigated the impact of maternal intake of a multispecies probiotic formulation during a critical prenatal window (from gestational day 6 until birth) on neurodevelopmental trajectories in mice. Our findings demonstrate significant and persistent benefits in emotional behavior, gut microbiota composition, and expression of tight junction-related genes, particularly in male offspring, who exhibited heightened sensitivity to the probiotic intervention compared to females. Additionally, we observed elevated gene expression levels of the anti-inflammatory cytokine <em>IL-10</em> and the oxytocin receptor (<em>Oxtr</em>) in the prefrontal cortex (PFC) of exposed juvenile offspring; however, these changes persisted only in the adult male offspring. Furthermore, the sustained increase in the expression of the proton-coupled oligopeptide transporter 1 (<em>PepT1</em>), which is involved in the transport of bacterial peptidoglycan motifs, in the PFC of exposed male offspring suggests a potential mechanistic pathway underlying the observed sex-dependent effects on behavior and gene expression. These results underscore the potential of prenatal multispecies probiotic interventions to promote long-term neurodevelopmental outcomes, with implications for precision microbial reconstitution aimed at promoting healthy neurodevelopment and behavior.</p></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":null,"pages":null},"PeriodicalIF":8.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0889159124005737/pdfft?md5=ab52e66f98f3cf72d3ec2ba2415a5d8d&pid=1-s2.0-S0889159124005737-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multispecies probiotic intake during pregnancy modulates neurodevelopmental trajectories of offspring: Aiming towards precision microbial intervention\",\"authors\":\"\",\"doi\":\"10.1016/j.bbi.2024.08.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent research highlights the pivotal role of the maternal gut microbiome during pregnancy in shaping offspring neurodevelopment. In this study, we investigated the impact of maternal intake of a multispecies probiotic formulation during a critical prenatal window (from gestational day 6 until birth) on neurodevelopmental trajectories in mice. Our findings demonstrate significant and persistent benefits in emotional behavior, gut microbiota composition, and expression of tight junction-related genes, particularly in male offspring, who exhibited heightened sensitivity to the probiotic intervention compared to females. Additionally, we observed elevated gene expression levels of the anti-inflammatory cytokine <em>IL-10</em> and the oxytocin receptor (<em>Oxtr</em>) in the prefrontal cortex (PFC) of exposed juvenile offspring; however, these changes persisted only in the adult male offspring. Furthermore, the sustained increase in the expression of the proton-coupled oligopeptide transporter 1 (<em>PepT1</em>), which is involved in the transport of bacterial peptidoglycan motifs, in the PFC of exposed male offspring suggests a potential mechanistic pathway underlying the observed sex-dependent effects on behavior and gene expression. These results underscore the potential of prenatal multispecies probiotic interventions to promote long-term neurodevelopmental outcomes, with implications for precision microbial reconstitution aimed at promoting healthy neurodevelopment and behavior.</p></div>\",\"PeriodicalId\":9199,\"journal\":{\"name\":\"Brain, Behavior, and Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0889159124005737/pdfft?md5=ab52e66f98f3cf72d3ec2ba2415a5d8d&pid=1-s2.0-S0889159124005737-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain, Behavior, and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889159124005737\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159124005737","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Multispecies probiotic intake during pregnancy modulates neurodevelopmental trajectories of offspring: Aiming towards precision microbial intervention
Recent research highlights the pivotal role of the maternal gut microbiome during pregnancy in shaping offspring neurodevelopment. In this study, we investigated the impact of maternal intake of a multispecies probiotic formulation during a critical prenatal window (from gestational day 6 until birth) on neurodevelopmental trajectories in mice. Our findings demonstrate significant and persistent benefits in emotional behavior, gut microbiota composition, and expression of tight junction-related genes, particularly in male offspring, who exhibited heightened sensitivity to the probiotic intervention compared to females. Additionally, we observed elevated gene expression levels of the anti-inflammatory cytokine IL-10 and the oxytocin receptor (Oxtr) in the prefrontal cortex (PFC) of exposed juvenile offspring; however, these changes persisted only in the adult male offspring. Furthermore, the sustained increase in the expression of the proton-coupled oligopeptide transporter 1 (PepT1), which is involved in the transport of bacterial peptidoglycan motifs, in the PFC of exposed male offspring suggests a potential mechanistic pathway underlying the observed sex-dependent effects on behavior and gene expression. These results underscore the potential of prenatal multispecies probiotic interventions to promote long-term neurodevelopmental outcomes, with implications for precision microbial reconstitution aimed at promoting healthy neurodevelopment and behavior.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.