Andrzej Antoni Szczepankiewicz , Kamil Parobczak , Monika Zaręba-Kozioł , Błażej Ruszczycki , Monika Bijata , Paweł Trzaskoma , Grzegorz Hajnowski , Dagmara Holm-Kaczmarek , Jakub Włodarczyk , Hanna Sas-Nowosielska , Grzegorz Marek Wilczyński , Maria Jolanta Rędowicz , Adriana Magalska
{"title":"神经元的激活会影响核斑点的组织和蛋白质组成。","authors":"Andrzej Antoni Szczepankiewicz , Kamil Parobczak , Monika Zaręba-Kozioł , Błażej Ruszczycki , Monika Bijata , Paweł Trzaskoma , Grzegorz Hajnowski , Dagmara Holm-Kaczmarek , Jakub Włodarczyk , Hanna Sas-Nowosielska , Grzegorz Marek Wilczyński , Maria Jolanta Rędowicz , Adriana Magalska","doi":"10.1016/j.bbamcr.2024.119829","DOIUrl":null,"url":null,"abstract":"<div><p>Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures.</p><p>Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies. Notably, the impact of neuronal activation on IGC/nuclear speckles organization and function remains unexplored. To address this research gap, we examined whether and how neuronal stimulation affects the organization of these bodies in granular neurons from the rat hippocampal formation. Our findings demonstrate that neuronal stimulation induces morphological and proteomic remodelling of the nuclear speckles under both <em>in vitro</em> and <em>in vivo</em> conditions. Importantly, these changes are not associated with cellular stress or cell death but are dependent on transcription and splicing.</p></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1871 8","pages":"Article 119829"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167488924001721/pdfft?md5=531bf475ffb59aed7ac2dcaedf185d6f&pid=1-s2.0-S0167488924001721-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Neuronal activation affects the organization and protein composition of the nuclear speckles\",\"authors\":\"Andrzej Antoni Szczepankiewicz , Kamil Parobczak , Monika Zaręba-Kozioł , Błażej Ruszczycki , Monika Bijata , Paweł Trzaskoma , Grzegorz Hajnowski , Dagmara Holm-Kaczmarek , Jakub Włodarczyk , Hanna Sas-Nowosielska , Grzegorz Marek Wilczyński , Maria Jolanta Rędowicz , Adriana Magalska\",\"doi\":\"10.1016/j.bbamcr.2024.119829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures.</p><p>Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies. Notably, the impact of neuronal activation on IGC/nuclear speckles organization and function remains unexplored. To address this research gap, we examined whether and how neuronal stimulation affects the organization of these bodies in granular neurons from the rat hippocampal formation. Our findings demonstrate that neuronal stimulation induces morphological and proteomic remodelling of the nuclear speckles under both <em>in vitro</em> and <em>in vivo</em> conditions. Importantly, these changes are not associated with cellular stress or cell death but are dependent on transcription and splicing.</p></div>\",\"PeriodicalId\":8754,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular cell research\",\"volume\":\"1871 8\",\"pages\":\"Article 119829\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167488924001721/pdfft?md5=531bf475ffb59aed7ac2dcaedf185d6f&pid=1-s2.0-S0167488924001721-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular cell research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167488924001721\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924001721","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Neuronal activation affects the organization and protein composition of the nuclear speckles
Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures.
Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies. Notably, the impact of neuronal activation on IGC/nuclear speckles organization and function remains unexplored. To address this research gap, we examined whether and how neuronal stimulation affects the organization of these bodies in granular neurons from the rat hippocampal formation. Our findings demonstrate that neuronal stimulation induces morphological and proteomic remodelling of the nuclear speckles under both in vitro and in vivo conditions. Importantly, these changes are not associated with cellular stress or cell death but are dependent on transcription and splicing.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.