在小鼠和 iPSC 模型中进行深度表型研究,以了解少突胶质细胞在沃尔夫拉姆综合征视神经病变中的作用。

IF 6.2 2区 医学 Q1 NEUROSCIENCES
K Ahuja, M Vandenabeele, F Nami, E Lefevere, J Van Hoecke, S Bergmans, M Claes, T Vervliet, K Neyrinck, T Burg, D De Herdt, P Bhaskar, Y Zhu, Z J Looser, J Loncke, W Gsell, M Plaas, P Agostinis, J V Swinnen, L Van Den Bosch, G Bultynck, A S Saab, E Wolfs, Y C Chai, U Himmelreich, C Verfaillie, L Moons, L De Groef
{"title":"在小鼠和 iPSC 模型中进行深度表型研究,以了解少突胶质细胞在沃尔夫拉姆综合征视神经病变中的作用。","authors":"K Ahuja, M Vandenabeele, F Nami, E Lefevere, J Van Hoecke, S Bergmans, M Claes, T Vervliet, K Neyrinck, T Burg, D De Herdt, P Bhaskar, Y Zhu, Z J Looser, J Loncke, W Gsell, M Plaas, P Agostinis, J V Swinnen, L Van Den Bosch, G Bultynck, A S Saab, E Wolfs, Y C Chai, U Himmelreich, C Verfaillie, L Moons, L De Groef","doi":"10.1186/s40478-024-01851-7","DOIUrl":null,"url":null,"abstract":"<p><p>Wolfram syndrome (WS) is a rare childhood disease characterized by diabetes mellitus, diabetes insipidus, blindness, deafness, neurodegeneration and eventually early death, due to autosomal recessive mutations in the WFS1 (and WFS2) gene. While it is categorized as a neurodegenerative disease, it is increasingly becoming clear that other cell types besides neurons may be affected and contribute to the pathogenesis. MRI studies in patients and phenotyping studies in WS rodent models indicate white matter/myelin loss, implicating a role for oligodendroglia in WS-associated neurodegeneration. In this study, we sought to determine if oligodendroglia are affected in WS and whether their dysfunction may be the primary cause of the observed optic neuropathy and brain neurodegeneration. We demonstrate that 7.5-month-old Wfs1<sup>∆exon8</sup> mice display signs of abnormal myelination and a reduced number of oligodendrocyte precursor cells (OPCs) as well as abnormal axonal conduction in the optic nerve. An MRI study of the brain furthermore revealed grey and white matter loss in the cerebellum, brainstem, and superior colliculus, as is seen in WS patients. To further dissect the role of oligodendroglia in WS, we performed a transcriptomics study of WS patient iPSC-derived OPCs and pre-myelinating oligodendrocytes. Transcriptional changes compared to isogenic control cells were found for genes with a role in ER function. However, a deep phenotyping study of these WS patient iPSC-derived oligodendroglia unveiled normal differentiation, mitochondria-associated endoplasmic reticulum (ER) membrane interactions and mitochondrial function, and no overt signs of ER stress. Overall, the current study indicates that oligodendroglia functions are largely preserved in the WS mouse and patient iPSC-derived models used in this study. These findings do not support a major defect in oligodendroglia function as the primary cause of WS, and warrant further investigation of neurons and neuron-oligodendroglia interactions as a target for future neuroprotective or -restorative treatments for WS.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"140"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351506/pdf/","citationCount":"0","resultStr":"{\"title\":\"A deep phenotyping study in mouse and iPSC models to understand the role of oligodendroglia in optic neuropathy in Wolfram syndrome.\",\"authors\":\"K Ahuja, M Vandenabeele, F Nami, E Lefevere, J Van Hoecke, S Bergmans, M Claes, T Vervliet, K Neyrinck, T Burg, D De Herdt, P Bhaskar, Y Zhu, Z J Looser, J Loncke, W Gsell, M Plaas, P Agostinis, J V Swinnen, L Van Den Bosch, G Bultynck, A S Saab, E Wolfs, Y C Chai, U Himmelreich, C Verfaillie, L Moons, L De Groef\",\"doi\":\"10.1186/s40478-024-01851-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wolfram syndrome (WS) is a rare childhood disease characterized by diabetes mellitus, diabetes insipidus, blindness, deafness, neurodegeneration and eventually early death, due to autosomal recessive mutations in the WFS1 (and WFS2) gene. While it is categorized as a neurodegenerative disease, it is increasingly becoming clear that other cell types besides neurons may be affected and contribute to the pathogenesis. MRI studies in patients and phenotyping studies in WS rodent models indicate white matter/myelin loss, implicating a role for oligodendroglia in WS-associated neurodegeneration. In this study, we sought to determine if oligodendroglia are affected in WS and whether their dysfunction may be the primary cause of the observed optic neuropathy and brain neurodegeneration. We demonstrate that 7.5-month-old Wfs1<sup>∆exon8</sup> mice display signs of abnormal myelination and a reduced number of oligodendrocyte precursor cells (OPCs) as well as abnormal axonal conduction in the optic nerve. An MRI study of the brain furthermore revealed grey and white matter loss in the cerebellum, brainstem, and superior colliculus, as is seen in WS patients. To further dissect the role of oligodendroglia in WS, we performed a transcriptomics study of WS patient iPSC-derived OPCs and pre-myelinating oligodendrocytes. Transcriptional changes compared to isogenic control cells were found for genes with a role in ER function. However, a deep phenotyping study of these WS patient iPSC-derived oligodendroglia unveiled normal differentiation, mitochondria-associated endoplasmic reticulum (ER) membrane interactions and mitochondrial function, and no overt signs of ER stress. Overall, the current study indicates that oligodendroglia functions are largely preserved in the WS mouse and patient iPSC-derived models used in this study. These findings do not support a major defect in oligodendroglia function as the primary cause of WS, and warrant further investigation of neurons and neuron-oligodendroglia interactions as a target for future neuroprotective or -restorative treatments for WS.</p>\",\"PeriodicalId\":6914,\"journal\":{\"name\":\"Acta Neuropathologica Communications\",\"volume\":\"12 1\",\"pages\":\"140\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40478-024-01851-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-024-01851-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

沃尔夫拉姆综合征(WS)是一种罕见的儿童疾病,由于 WFS1(和 WFS2)基因的常染色体隐性突变,导致糖尿病、糖尿病性尿崩症、失明、耳聋、神经变性并最终导致早期死亡。虽然该病被归类为神经退行性疾病,但人们越来越清楚地认识到,除神经元外,其他细胞类型也可能受到影响,并对发病机制起作用。对患者进行的磁共振成像研究和对 WS 啮齿动物模型进行的表型研究表明,白质/髓鞘丢失,暗示了少突胶质细胞在 WS 相关神经变性中的作用。在本研究中,我们试图确定少突胶质细胞在 WS 中是否受到影响,以及它们的功能障碍是否可能是所观察到的视神经病变和脑神经变性的主要原因。我们发现,7.5 个月大的 Wfs1∆exon8 小鼠表现出髓鞘化异常、少突胶质细胞前体细胞(OPCs)数量减少以及视神经轴突传导异常。大脑核磁共振成像研究进一步显示,小脑、脑干和上丘的灰质和白质丢失,这在 WS 患者中也可见。为了进一步剖析少突胶质细胞在 WS 中的作用,我们对 WS 患者 iPSC 衍生的 OPC 和髓鞘前少突胶质细胞进行了转录组学研究。与同源对照细胞相比,发现在ER功能中发挥作用的基因发生了转录变化。然而,对这些WS患者iPSC衍生的少突胶质细胞进行的深度表型研究显示,它们的分化、线粒体相关内质网(ER)膜相互作用和线粒体功能正常,没有明显的ER应激迹象。总之,目前的研究表明,在本研究使用的 WS 小鼠和患者 iPSC 衍生模型中,少突胶质细胞的功能在很大程度上得以保留。这些发现并不支持少突胶质细胞功能的重大缺陷是导致 WS 的主要原因,因此有必要进一步研究神经元和神经元与少突胶质细胞之间的相互作用,并将其作为未来 WS 神经保护或恢复治疗的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep phenotyping study in mouse and iPSC models to understand the role of oligodendroglia in optic neuropathy in Wolfram syndrome.

Wolfram syndrome (WS) is a rare childhood disease characterized by diabetes mellitus, diabetes insipidus, blindness, deafness, neurodegeneration and eventually early death, due to autosomal recessive mutations in the WFS1 (and WFS2) gene. While it is categorized as a neurodegenerative disease, it is increasingly becoming clear that other cell types besides neurons may be affected and contribute to the pathogenesis. MRI studies in patients and phenotyping studies in WS rodent models indicate white matter/myelin loss, implicating a role for oligodendroglia in WS-associated neurodegeneration. In this study, we sought to determine if oligodendroglia are affected in WS and whether their dysfunction may be the primary cause of the observed optic neuropathy and brain neurodegeneration. We demonstrate that 7.5-month-old Wfs1∆exon8 mice display signs of abnormal myelination and a reduced number of oligodendrocyte precursor cells (OPCs) as well as abnormal axonal conduction in the optic nerve. An MRI study of the brain furthermore revealed grey and white matter loss in the cerebellum, brainstem, and superior colliculus, as is seen in WS patients. To further dissect the role of oligodendroglia in WS, we performed a transcriptomics study of WS patient iPSC-derived OPCs and pre-myelinating oligodendrocytes. Transcriptional changes compared to isogenic control cells were found for genes with a role in ER function. However, a deep phenotyping study of these WS patient iPSC-derived oligodendroglia unveiled normal differentiation, mitochondria-associated endoplasmic reticulum (ER) membrane interactions and mitochondrial function, and no overt signs of ER stress. Overall, the current study indicates that oligodendroglia functions are largely preserved in the WS mouse and patient iPSC-derived models used in this study. These findings do not support a major defect in oligodendroglia function as the primary cause of WS, and warrant further investigation of neurons and neuron-oligodendroglia interactions as a target for future neuroprotective or -restorative treatments for WS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信