卫星遥感植被物候:进展、挑战和机遇

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Zheng Gong , Wenyan Ge , Jiaqi Guo , Jincheng Liu
{"title":"卫星遥感植被物候:进展、挑战和机遇","authors":"Zheng Gong ,&nbsp;Wenyan Ge ,&nbsp;Jiaqi Guo ,&nbsp;Jincheng Liu","doi":"10.1016/j.isprsjprs.2024.08.011","DOIUrl":null,"url":null,"abstract":"<div><p>Vegetation phenology serves as a crucial indicator of ecosystem dynamics and its response to environmental cues. Against the backdrop of global climate warming, it plays a pivotal role in delving into global climate change, terrestrial ecosystem dynamics, and guiding agricultural production. Ground-based field observations of vegetation phenology are increasingly challenged by rapid global ecological changes. Since the 1970 s, the development and application of remote sensing technology have offered a novel approach to address these challenges. Utilizing satellite remote sensing to acquire phenological parameters has been widely applied in monitoring vegetation phenology, significantly advancing phenological research. This paper describes commonly used vegetation indices, smoothing methods, and extraction techniques in monitoring vegetation phenology using satellite remote sensing. It systematically summarizes the applications and progress of vegetation phenology remote sensing at a global scale in recent years and analyzes the challenges of vegetation phenology remote sensing: These challenges include the need for higher spatiotemporal resolution data to capture vegetation changes, the necessity to compare remote sensing monitoring methods with direct field observations, the requirement to compare different remote sensing techniques to ensure accuracy, and the importance of incorporating seasonal variations and differences into phenology extraction models. It delves into the key issues and challenges existing in current vegetation phenology remote sensing, including the limitations of existing vegetation indices, the impact of spatiotemporal scale effects on phenology parameter extraction, uncertainties in phenology algorithms and machine learning, and the relationship between vegetation phenology and global climate change. Based on these discussions, the it proposes several opportunities and future prospects, containing improving the temporal and spatial resolution of data sources, using multiple datasets to monitor vegetation phenology dynamics, quantifying uncertainties in the algorithm and machine learning processes for phenology parameter extraction, clarifying the adaptive mechanisms of vegetation phenology to environmental changes, focusing on the impact of extreme weather, and establishing an integrated “sky-space-ground” vegetation phenology monitoring network. These developments aim to enhance the accuracy of phenology extraction, explore and understand the mechanisms of surface phenology changes, and impart more biophysical significance to vegetation phenology parameters.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"217 ","pages":"Pages 149-164"},"PeriodicalIF":10.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite remote sensing of vegetation phenology: Progress, challenges, and opportunities\",\"authors\":\"Zheng Gong ,&nbsp;Wenyan Ge ,&nbsp;Jiaqi Guo ,&nbsp;Jincheng Liu\",\"doi\":\"10.1016/j.isprsjprs.2024.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vegetation phenology serves as a crucial indicator of ecosystem dynamics and its response to environmental cues. Against the backdrop of global climate warming, it plays a pivotal role in delving into global climate change, terrestrial ecosystem dynamics, and guiding agricultural production. Ground-based field observations of vegetation phenology are increasingly challenged by rapid global ecological changes. Since the 1970 s, the development and application of remote sensing technology have offered a novel approach to address these challenges. Utilizing satellite remote sensing to acquire phenological parameters has been widely applied in monitoring vegetation phenology, significantly advancing phenological research. This paper describes commonly used vegetation indices, smoothing methods, and extraction techniques in monitoring vegetation phenology using satellite remote sensing. It systematically summarizes the applications and progress of vegetation phenology remote sensing at a global scale in recent years and analyzes the challenges of vegetation phenology remote sensing: These challenges include the need for higher spatiotemporal resolution data to capture vegetation changes, the necessity to compare remote sensing monitoring methods with direct field observations, the requirement to compare different remote sensing techniques to ensure accuracy, and the importance of incorporating seasonal variations and differences into phenology extraction models. It delves into the key issues and challenges existing in current vegetation phenology remote sensing, including the limitations of existing vegetation indices, the impact of spatiotemporal scale effects on phenology parameter extraction, uncertainties in phenology algorithms and machine learning, and the relationship between vegetation phenology and global climate change. Based on these discussions, the it proposes several opportunities and future prospects, containing improving the temporal and spatial resolution of data sources, using multiple datasets to monitor vegetation phenology dynamics, quantifying uncertainties in the algorithm and machine learning processes for phenology parameter extraction, clarifying the adaptive mechanisms of vegetation phenology to environmental changes, focusing on the impact of extreme weather, and establishing an integrated “sky-space-ground” vegetation phenology monitoring network. These developments aim to enhance the accuracy of phenology extraction, explore and understand the mechanisms of surface phenology changes, and impart more biophysical significance to vegetation phenology parameters.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"217 \",\"pages\":\"Pages 149-164\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003228\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003228","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

植被物候是生态系统动态及其对环境线索反应的重要指标。在全球气候变暖的背景下,它在研究全球气候变化、陆地生态系统动态和指导农业生产方面发挥着举足轻重的作用。植被物候的地面实地观测正日益受到全球生态快速变化的挑战。自 20 世纪 70 年代以来,遥感技术的发展和应用为应对这些挑战提供了一种新方法。利用卫星遥感获取物候参数已广泛应用于植被物候监测,极大地推动了物候研究。本文介绍了利用卫星遥感技术监测植被物候的常用植被指数、平滑方法和提取技术。它系统地总结了近年来全球范围内植被物候遥感的应用和进展,并分析了植被物候遥感面临的挑战:这些挑战包括:需要更高的时空分辨率数据来捕捉植被变化;需要将遥感监测方法与直接实地观测进行比较;需要对不同的遥感技术进行比较以确保准确性;以及将季节变化和差异纳入物候提取模型的重要性。报告深入探讨了当前植被物候遥感中存在的关键问题和挑战,包括现有植被指数的局限性、时空尺度效应对物候参数提取的影响、物候算法和机器学习的不确定性,以及植被物候与全球气候变化之间的关系。基于这些讨论,报告提出了若干机遇和未来展望,包括提高数据源的时空分辨率、利用多种数据集监测植被物候动态、量化物候参数提取算法和机器学习过程中的不确定性、阐明植被物候对环境变化的适应机制、关注极端天气的影响以及建立 "天-空-地 "一体化植被物候监测网络。这些进展旨在提高物候提取的准确性,探索和理解地表物候变化的机制,赋予植被物候参数更多的生物物理意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Satellite remote sensing of vegetation phenology: Progress, challenges, and opportunities

Satellite remote sensing of vegetation phenology: Progress, challenges, and opportunities

Vegetation phenology serves as a crucial indicator of ecosystem dynamics and its response to environmental cues. Against the backdrop of global climate warming, it plays a pivotal role in delving into global climate change, terrestrial ecosystem dynamics, and guiding agricultural production. Ground-based field observations of vegetation phenology are increasingly challenged by rapid global ecological changes. Since the 1970 s, the development and application of remote sensing technology have offered a novel approach to address these challenges. Utilizing satellite remote sensing to acquire phenological parameters has been widely applied in monitoring vegetation phenology, significantly advancing phenological research. This paper describes commonly used vegetation indices, smoothing methods, and extraction techniques in monitoring vegetation phenology using satellite remote sensing. It systematically summarizes the applications and progress of vegetation phenology remote sensing at a global scale in recent years and analyzes the challenges of vegetation phenology remote sensing: These challenges include the need for higher spatiotemporal resolution data to capture vegetation changes, the necessity to compare remote sensing monitoring methods with direct field observations, the requirement to compare different remote sensing techniques to ensure accuracy, and the importance of incorporating seasonal variations and differences into phenology extraction models. It delves into the key issues and challenges existing in current vegetation phenology remote sensing, including the limitations of existing vegetation indices, the impact of spatiotemporal scale effects on phenology parameter extraction, uncertainties in phenology algorithms and machine learning, and the relationship between vegetation phenology and global climate change. Based on these discussions, the it proposes several opportunities and future prospects, containing improving the temporal and spatial resolution of data sources, using multiple datasets to monitor vegetation phenology dynamics, quantifying uncertainties in the algorithm and machine learning processes for phenology parameter extraction, clarifying the adaptive mechanisms of vegetation phenology to environmental changes, focusing on the impact of extreme weather, and establishing an integrated “sky-space-ground” vegetation phenology monitoring network. These developments aim to enhance the accuracy of phenology extraction, explore and understand the mechanisms of surface phenology changes, and impart more biophysical significance to vegetation phenology parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信