图的拉普拉斯-埃斯特拉达指数的尖锐下界

IF 0.9 4区 数学 Q2 MATHEMATICS
Sasmita Barik, Tahir Shamsher
{"title":"图的拉普拉斯-埃斯特拉达指数的尖锐下界","authors":"Sasmita Barik, Tahir Shamsher","doi":"10.1080/03081087.2024.2396132","DOIUrl":null,"url":null,"abstract":"Let G be a simple graph on n vertices, and let λ1,λ2,…,λn be the Laplacian eigenvalues of G. The Laplacian Estrada index of G is defined as LEE(G)=∑i=1neλi. Consider a graph G with n≥3 vertices, m ...","PeriodicalId":49905,"journal":{"name":"Linear & Multilinear Algebra","volume":"98 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp lower bounds for the Laplacian Estrada index of graphs\",\"authors\":\"Sasmita Barik, Tahir Shamsher\",\"doi\":\"10.1080/03081087.2024.2396132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a simple graph on n vertices, and let λ1,λ2,…,λn be the Laplacian eigenvalues of G. The Laplacian Estrada index of G is defined as LEE(G)=∑i=1neλi. Consider a graph G with n≥3 vertices, m ...\",\"PeriodicalId\":49905,\"journal\":{\"name\":\"Linear & Multilinear Algebra\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear & Multilinear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03081087.2024.2396132\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear & Multilinear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03081087.2024.2396132","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是 n 个顶点上的简单图,设 λ1,λ2,...,λn 为 G 的拉普拉奇特征值,G 的拉普拉奇埃斯特拉达指数定义为 LEE(G)=∑i=1neλi。考虑一个有 n≥3 个顶点、m ...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp lower bounds for the Laplacian Estrada index of graphs
Let G be a simple graph on n vertices, and let λ1,λ2,…,λn be the Laplacian eigenvalues of G. The Laplacian Estrada index of G is defined as LEE(G)=∑i=1neλi. Consider a graph G with n≥3 vertices, m ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
18.20%
发文量
175
审稿时长
4-8 weeks
期刊介绍: Linear and Multilinear Algebra publishes high-quality original research papers that advance the study of linear and multilinear algebra, or that include novel applications of linear and multilinear algebra to other branches of mathematics and science. Linear and Multilinear Algebra also publishes research problems, survey articles and book reviews of interest to researchers in linear and multilinear algebra. Appropriate areas include, but are not limited to: spaces over fields or rings tensor algebras nonnegative matrices inequalities in linear algebra combinatorial matrix theory numerical linear algebra representation theory Lie theory invariant theory and operator theory The audience for Linear and Multilinear Algebra includes both industrial and academic mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信