Juan D. Aux, Bryan Castillo, Carlos Riascos, Johannio Marulanda, Peter Thomson
{"title":"利用预测性人体步态模型评估人行天桥上的垂直人-结构相互作用","authors":"Juan D. Aux, Bryan Castillo, Carlos Riascos, Johannio Marulanda, Peter Thomson","doi":"10.1155/2024/8880701","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Many modern pedestrian bridges exhibit flexibility and susceptibility to vibrations due to the use of lightweight and high-strength materials, which can cause discomfort for pedestrians and affect their serviceability. Although gait biomechanics have been extensively studied and optimisation techniques for gait prediction on rigid surfaces have been previously employed, there is a paucity of studies investigating the effects of human-structure interaction on pedestrian crossings over flexible structures. In this study, inverse dynamics and optimisation techniques were employed to predict human gait on a flexible structure in the sagittal plane. Gait was formulated as an optimal motor task subject to multiple constraints, with the performance criterion being the minimization of mechanical energy expenditure throughout a complete gait cycle. Segmental movements, pedestrian-applied forces, and bridge vibrations were predicted based on parameters describing gait (such as gait speed, gait frequency, and double support duration), as well as physical and dynamic parameters characterizing the pedestrian bridge (including natural frequency, damping coefficient, and bridge length).</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8880701","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Vertical Human-Structure Interaction on a Pedestrian Bridge Using a Predictive Human Gait Model\",\"authors\":\"Juan D. Aux, Bryan Castillo, Carlos Riascos, Johannio Marulanda, Peter Thomson\",\"doi\":\"10.1155/2024/8880701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Many modern pedestrian bridges exhibit flexibility and susceptibility to vibrations due to the use of lightweight and high-strength materials, which can cause discomfort for pedestrians and affect their serviceability. Although gait biomechanics have been extensively studied and optimisation techniques for gait prediction on rigid surfaces have been previously employed, there is a paucity of studies investigating the effects of human-structure interaction on pedestrian crossings over flexible structures. In this study, inverse dynamics and optimisation techniques were employed to predict human gait on a flexible structure in the sagittal plane. Gait was formulated as an optimal motor task subject to multiple constraints, with the performance criterion being the minimization of mechanical energy expenditure throughout a complete gait cycle. Segmental movements, pedestrian-applied forces, and bridge vibrations were predicted based on parameters describing gait (such as gait speed, gait frequency, and double support duration), as well as physical and dynamic parameters characterizing the pedestrian bridge (including natural frequency, damping coefficient, and bridge length).</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8880701\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8880701\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8880701","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Evaluation of Vertical Human-Structure Interaction on a Pedestrian Bridge Using a Predictive Human Gait Model
Many modern pedestrian bridges exhibit flexibility and susceptibility to vibrations due to the use of lightweight and high-strength materials, which can cause discomfort for pedestrians and affect their serviceability. Although gait biomechanics have been extensively studied and optimisation techniques for gait prediction on rigid surfaces have been previously employed, there is a paucity of studies investigating the effects of human-structure interaction on pedestrian crossings over flexible structures. In this study, inverse dynamics and optimisation techniques were employed to predict human gait on a flexible structure in the sagittal plane. Gait was formulated as an optimal motor task subject to multiple constraints, with the performance criterion being the minimization of mechanical energy expenditure throughout a complete gait cycle. Segmental movements, pedestrian-applied forces, and bridge vibrations were predicted based on parameters describing gait (such as gait speed, gait frequency, and double support duration), as well as physical and dynamic parameters characterizing the pedestrian bridge (including natural frequency, damping coefficient, and bridge length).
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.