{"title":"对 \"通过计算方法全面分析萘和珀烯二亚胺衍生物中的电子跃迁 \"的更正","authors":"","doi":"10.1002/qua.27473","DOIUrl":null,"url":null,"abstract":"<p>W. Hussain, M. S. Iqbal, H. Li, M. Sulaman, H. Guo, C. Li, Y. Sandali, A. Irfan, and H. S. Ali, “A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods,” <i>International Journal of Quantum Chemistry</i> 124, no. 1 (2024): e27223, 10.1002/qua.27223.</p><p>During the assembly of Figure 27, the image intended to represent Figure D was incorrectly replaced by a duplicate of Figure E. This resulted in the erroneous presentation of Figure E twice and the omission of the correct Figure D.</p><p>Additionally, a statement from Section 2.2 Computational Detail needs to be changed from: “The DOS data were shown using PyMOlyze 1.1, and the electron densities were calculated using Multiwfn 3.7 [43].” to “The DOS data were shown using PyMOlyze 1.1, and the electron density maps and non-covalent interaction (NCI) plots were generated using Multiwfn 3.7 [43] and visualized using VMD software (Ref. W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics,” <i>Journal of Molecular Graphics</i> 14, no. 1 (1996): 33–38, 27–38.).”</p><p>We apologize for this error.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27473","citationCount":"0","resultStr":"{\"title\":\"Correction to “A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods”\",\"authors\":\"\",\"doi\":\"10.1002/qua.27473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>W. Hussain, M. S. Iqbal, H. Li, M. Sulaman, H. Guo, C. Li, Y. Sandali, A. Irfan, and H. S. Ali, “A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods,” <i>International Journal of Quantum Chemistry</i> 124, no. 1 (2024): e27223, 10.1002/qua.27223.</p><p>During the assembly of Figure 27, the image intended to represent Figure D was incorrectly replaced by a duplicate of Figure E. This resulted in the erroneous presentation of Figure E twice and the omission of the correct Figure D.</p><p>Additionally, a statement from Section 2.2 Computational Detail needs to be changed from: “The DOS data were shown using PyMOlyze 1.1, and the electron densities were calculated using Multiwfn 3.7 [43].” to “The DOS data were shown using PyMOlyze 1.1, and the electron density maps and non-covalent interaction (NCI) plots were generated using Multiwfn 3.7 [43] and visualized using VMD software (Ref. W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics,” <i>Journal of Molecular Graphics</i> 14, no. 1 (1996): 33–38, 27–38.).”</p><p>We apologize for this error.</p>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"124 17\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27473\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27473\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27473","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
Hussain, M. S. Iqbal, H. Li, M. Sulaman, H. Guo, C. Li, Y. Sandali, A. Irfan, and H. S. Ali, "A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods," International Journal of Quantum Chemistry 124, no.此外,第 2.2 节 "计算细节 "中的一句话需要修改:"DOS 数据使用 PyMOlyze 1.1 显示 DOS 数据,使用 Multiwfn 3.7 [43] 计算电子密度。"改为 "使用 PyMOlyze 1.1 显示 DOS 数据,使用 Multiwfn 3.7 [43] 生成电子密度图和非共价相互作用 (NCI) 图,并使用 VMD 软件进行可视化(参考文献:W. Humphrey、A. Dalke 和 K. Schulten,"VMD:可视化分子动力学",《分子图形学杂志》14,第 1 期(1996 年):33-38,27-38)。"我们对这一错误表示歉意。
Correction to “A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods”
W. Hussain, M. S. Iqbal, H. Li, M. Sulaman, H. Guo, C. Li, Y. Sandali, A. Irfan, and H. S. Ali, “A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods,” International Journal of Quantum Chemistry 124, no. 1 (2024): e27223, 10.1002/qua.27223.
During the assembly of Figure 27, the image intended to represent Figure D was incorrectly replaced by a duplicate of Figure E. This resulted in the erroneous presentation of Figure E twice and the omission of the correct Figure D.
Additionally, a statement from Section 2.2 Computational Detail needs to be changed from: “The DOS data were shown using PyMOlyze 1.1, and the electron densities were calculated using Multiwfn 3.7 [43].” to “The DOS data were shown using PyMOlyze 1.1, and the electron density maps and non-covalent interaction (NCI) plots were generated using Multiwfn 3.7 [43] and visualized using VMD software (Ref. W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics,” Journal of Molecular Graphics 14, no. 1 (1996): 33–38, 27–38.).”
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.