改进型罗森-莫尔斯振荡器的热磁模型

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
A. D. Ahmed, E. S. Eyube, S. D. Najoji, P. U. Tanko, C. A. Onate, E. Omugbe, B. D. Mohammed, C. R. Makasson, E. H. Mshelia
{"title":"改进型罗森-莫尔斯振荡器的热磁模型","authors":"A. D. Ahmed,&nbsp;E. S. Eyube,&nbsp;S. D. Najoji,&nbsp;P. U. Tanko,&nbsp;C. A. Onate,&nbsp;E. Omugbe,&nbsp;B. D. Mohammed,&nbsp;C. R. Makasson,&nbsp;E. H. Mshelia","doi":"10.1002/qua.27463","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study solves the radial Schrödinger wave equation (RSWE) with the improved Rosen–Morse (IRM) potential constrained by an electromagnetic field. Energy eigenvalues are derived using the parametric Nikiforov–Uvarov method and Pekeris approximation. The internal partition function, isobaric molar heat capacity formula, and magnetization model are then deduced from the equation governing pure vibrational energy states. These analytical models are applied to several pure substances, specifically Br<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), BrF (X <sup>1</sup>Σ<sup>+</sup>), ICl (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), and P<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>) molecules. Numerical approximations of the energy eigenvalues for these molecules closely match their exact values. The isobaric molar heat capacity expression yields mean percentage absolute deviations of 1.6585%, 0.9162%, 1.2193%, and 0.7232% when compared against experimental data for Br<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), BrF (X <sup>1</sup>Σ<sup>+</sup>), ICl (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), and P<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), respectively. These results align well with other heat capacity models in existing literature.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermomagnetic Models for the Improved Rosen–Morse Oscillator\",\"authors\":\"A. D. Ahmed,&nbsp;E. S. Eyube,&nbsp;S. D. Najoji,&nbsp;P. U. Tanko,&nbsp;C. A. Onate,&nbsp;E. Omugbe,&nbsp;B. D. Mohammed,&nbsp;C. R. Makasson,&nbsp;E. H. Mshelia\",\"doi\":\"10.1002/qua.27463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study solves the radial Schrödinger wave equation (RSWE) with the improved Rosen–Morse (IRM) potential constrained by an electromagnetic field. Energy eigenvalues are derived using the parametric Nikiforov–Uvarov method and Pekeris approximation. The internal partition function, isobaric molar heat capacity formula, and magnetization model are then deduced from the equation governing pure vibrational energy states. These analytical models are applied to several pure substances, specifically Br<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), BrF (X <sup>1</sup>Σ<sup>+</sup>), ICl (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), and P<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>) molecules. Numerical approximations of the energy eigenvalues for these molecules closely match their exact values. The isobaric molar heat capacity expression yields mean percentage absolute deviations of 1.6585%, 0.9162%, 1.2193%, and 0.7232% when compared against experimental data for Br<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), BrF (X <sup>1</sup>Σ<sup>+</sup>), ICl (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), and P<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), respectively. These results align well with other heat capacity models in existing literature.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"124 17\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27463\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27463","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用电磁场约束下的改进罗森-莫尔斯(IRM)势求解了径向薛定谔波方程(RSWE)。利用参数 Nikiforov-Uvarov 方法和 Pekeris 近似方法得出了能量特征值。然后根据纯振动能态方程推导出内部分配函数、等压摩尔热容公式和磁化模型。这些分析模型适用于几种纯物质,特别是 Br2 (X 1Σg+)、BrF (X 1Σ+)、ICl (X 1Σg+) 和 P2 (X 1Σg+) 分子。这些分子的能量特征值的数值近似值与它们的精确值非常接近。与 Br2 (X 1Σg+)、BrF (X 1Σ+)、ICl (X 1Σg+) 和 P2 (X 1Σg+) 的实验数据相比,等压摩尔热容表达式得出的平均绝对偏差百分比分别为 1.6585%、0.9162%、1.2193% 和 0.7232%。这些结果与现有文献中的其他热容量模型非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermomagnetic Models for the Improved Rosen–Morse Oscillator

Thermomagnetic Models for the Improved Rosen–Morse Oscillator

This study solves the radial Schrödinger wave equation (RSWE) with the improved Rosen–Morse (IRM) potential constrained by an electromagnetic field. Energy eigenvalues are derived using the parametric Nikiforov–Uvarov method and Pekeris approximation. The internal partition function, isobaric molar heat capacity formula, and magnetization model are then deduced from the equation governing pure vibrational energy states. These analytical models are applied to several pure substances, specifically Br2 (X 1Σg+), BrF (X 1Σ+), ICl (X 1Σg+), and P2 (X 1Σg+) molecules. Numerical approximations of the energy eigenvalues for these molecules closely match their exact values. The isobaric molar heat capacity expression yields mean percentage absolute deviations of 1.6585%, 0.9162%, 1.2193%, and 0.7232% when compared against experimental data for Br2 (X 1Σg+), BrF (X 1Σ+), ICl (X 1Σg+), and P2 (X 1Σg+), respectively. These results align well with other heat capacity models in existing literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信