通过结合 TSF 特征和基于注意力的深度神经网络揭露视频监控对象伪造问题

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jun-Liu Zhong , Yan-Fen Gan , Ji-Xiang Yang , Yu-Huan Chen , Ying-Qi Zhao , Zhi-Sheng Lv
{"title":"通过结合 TSF 特征和基于注意力的深度神经网络揭露视频监控对象伪造问题","authors":"Jun-Liu Zhong ,&nbsp;Yan-Fen Gan ,&nbsp;Ji-Xiang Yang ,&nbsp;Yu-Huan Chen ,&nbsp;Ying-Qi Zhao ,&nbsp;Zhi-Sheng Lv","doi":"10.1016/j.jvcir.2024.104267","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, forensics has encountered a new challenge with video surveillance object forgery. This type of forgery combines the characteristics of popular video copy-move and splicing forgeries, failing most existing video forgery detection schemes. In response to this new forgery challenge, this paper proposes a Video Surveillance Object Forgery Detection (VSOFD) method including three parts components: (i) The proposed method presents a special-combined extraction technique that incorporates Temporal-Spatial-Frequent (TSF) perspectives for TSF feature extraction. Furthermore, TSF features can effectively represent video information and benefit from feature dimension reduction, improving computational efficiency. (ii) The proposed method introduces a universal, extensible attention-based Convolutional Neural Network (CNN) baseline for feature processing. This CNN processing architecture is compatible with various series and parallel feed-forward CNN structures, considering these structures as processing backbones. Therefore, the proposed CNN architecture benefits from various state-of-the-art structures, leading to addressing each independent TSF feature. (iii) The method adopts an encoder-attention-decoder RNN framework for feature classification. By incorporating temporal characteristics, the framework can further identify the correlations between the adjacent frames to classify the forgery frames better. Finally, experimental results show that the proposed network can achieve the best <em>F</em><sub>1</sub> = 94.69 % score, increasing at least 5–12 % from the existing State-Of-The-Art (SOTA) VSOFD schemes and other video forensics.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104267"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposing video surveillance object forgery by combining TSF features and attention-based deep neural networks\",\"authors\":\"Jun-Liu Zhong ,&nbsp;Yan-Fen Gan ,&nbsp;Ji-Xiang Yang ,&nbsp;Yu-Huan Chen ,&nbsp;Ying-Qi Zhao ,&nbsp;Zhi-Sheng Lv\",\"doi\":\"10.1016/j.jvcir.2024.104267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, forensics has encountered a new challenge with video surveillance object forgery. This type of forgery combines the characteristics of popular video copy-move and splicing forgeries, failing most existing video forgery detection schemes. In response to this new forgery challenge, this paper proposes a Video Surveillance Object Forgery Detection (VSOFD) method including three parts components: (i) The proposed method presents a special-combined extraction technique that incorporates Temporal-Spatial-Frequent (TSF) perspectives for TSF feature extraction. Furthermore, TSF features can effectively represent video information and benefit from feature dimension reduction, improving computational efficiency. (ii) The proposed method introduces a universal, extensible attention-based Convolutional Neural Network (CNN) baseline for feature processing. This CNN processing architecture is compatible with various series and parallel feed-forward CNN structures, considering these structures as processing backbones. Therefore, the proposed CNN architecture benefits from various state-of-the-art structures, leading to addressing each independent TSF feature. (iii) The method adopts an encoder-attention-decoder RNN framework for feature classification. By incorporating temporal characteristics, the framework can further identify the correlations between the adjacent frames to classify the forgery frames better. Finally, experimental results show that the proposed network can achieve the best <em>F</em><sub>1</sub> = 94.69 % score, increasing at least 5–12 % from the existing State-Of-The-Art (SOTA) VSOFD schemes and other video forensics.</p></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"104 \",\"pages\":\"Article 104267\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002232\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002232","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最近,取证工作遇到了视频监控对象伪造的新挑战。这类伪造结合了流行的视频复制移动和拼接伪造的特点,使现有的大多数视频伪造检测方案失效。针对这一新的伪造挑战,本文提出了一种视频监控对象伪造检测(VSOFD)方法,包括三个部分:(i) 本文提出了一种特殊的组合提取技术,该技术结合了时间-空间-频率(TSF)视角进行 TSF 特征提取。此外,TSF 特征能有效地表示视频信息,并能从特征维度缩减中获益,从而提高计算效率。(ii) 所提出的方法为特征处理引入了一个通用的、可扩展的、基于注意力的卷积神经网络(CNN)基线。这种 CNN 处理架构兼容各种串联和并联前馈 CNN 结构,将这些结构视为处理骨干。因此,拟议的 CNN 架构可受益于各种最先进的结构,从而处理每个独立的 TSF 特征。(iii) 该方法采用编码器-注意-解码器 RNN 框架进行特征分类。通过结合时间特征,该框架可以进一步识别相邻帧之间的相关性,从而更好地对伪造帧进行分类。最后,实验结果表明,所提出的网络可以达到最佳 F1 = 94.69 % 的分数,比现有的技术水平 (SOTA) VSOFD 方案和其他视频取证方案至少提高了 5-12 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exposing video surveillance object forgery by combining TSF features and attention-based deep neural networks

Recently, forensics has encountered a new challenge with video surveillance object forgery. This type of forgery combines the characteristics of popular video copy-move and splicing forgeries, failing most existing video forgery detection schemes. In response to this new forgery challenge, this paper proposes a Video Surveillance Object Forgery Detection (VSOFD) method including three parts components: (i) The proposed method presents a special-combined extraction technique that incorporates Temporal-Spatial-Frequent (TSF) perspectives for TSF feature extraction. Furthermore, TSF features can effectively represent video information and benefit from feature dimension reduction, improving computational efficiency. (ii) The proposed method introduces a universal, extensible attention-based Convolutional Neural Network (CNN) baseline for feature processing. This CNN processing architecture is compatible with various series and parallel feed-forward CNN structures, considering these structures as processing backbones. Therefore, the proposed CNN architecture benefits from various state-of-the-art structures, leading to addressing each independent TSF feature. (iii) The method adopts an encoder-attention-decoder RNN framework for feature classification. By incorporating temporal characteristics, the framework can further identify the correlations between the adjacent frames to classify the forgery frames better. Finally, experimental results show that the proposed network can achieve the best F1 = 94.69 % score, increasing at least 5–12 % from the existing State-Of-The-Art (SOTA) VSOFD schemes and other video forensics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信