扩展 SpK 原子物理代码以生成全局状态方程数据

IF 1.6 3区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Adam R. Fraser , A.J. Crilly , N.-P.L. Niasse , D.A. Chapman , J.D. Pecover , S.J. O’Neill , J.P. Chittenden
{"title":"扩展 SpK 原子物理代码以生成全局状态方程数据","authors":"Adam R. Fraser ,&nbsp;A.J. Crilly ,&nbsp;N.-P.L. Niasse ,&nbsp;D.A. Chapman ,&nbsp;J.D. Pecover ,&nbsp;S.J. O’Neill ,&nbsp;J.P. Chittenden","doi":"10.1016/j.hedp.2024.101136","DOIUrl":null,"url":null,"abstract":"<div><p>Global microphysics models are required for the modelling of high-energy-density physics (HEDP) experiments, the improvement of which are critical to the path to inertial fusion energy. This work presents further developments to the atomic and microphysics code, <span>SpK</span>, part of the numerical modelling suite of Imperial College London and First Light Fusion. We extend the capabilities of <span>SpK</span> to allow the calculation of the equation of state (EoS). The detailed configuration accounting calculations are interpolated into finite-temperature Thomas–Fermi calculations at high coupling to form the electronic component of the model. The Cowan model provides the ionic contribution, modified to approximate the physics of diatomic molecular dissociation. By utilising bonding corrections and performing a Maxwell construction, <span>SpK</span> captures the EoS from states ranging from the zero-pressure solid, through the liquid–vapour coexistence region and into plasma states. This global approach offers the benefit of capturing electronic shell structure over large regions of parameter space, building highly-resolved tables in minutes on a simple desktop. We present shock Hugoniot and off-Hugoniot calculations for a number of materials, comparing <span>SpK</span> to other models and experimental data. We also apply EoS and opacity data generated by <span>SpK</span> in integrated simulations of indirectly-driven capsule implosions, highlighting physical sensitivities to the choice of EoS models.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"53 ","pages":"Article 101136"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension of the SpK atomic physics code to generate global equation of state data\",\"authors\":\"Adam R. Fraser ,&nbsp;A.J. Crilly ,&nbsp;N.-P.L. Niasse ,&nbsp;D.A. Chapman ,&nbsp;J.D. Pecover ,&nbsp;S.J. O’Neill ,&nbsp;J.P. Chittenden\",\"doi\":\"10.1016/j.hedp.2024.101136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global microphysics models are required for the modelling of high-energy-density physics (HEDP) experiments, the improvement of which are critical to the path to inertial fusion energy. This work presents further developments to the atomic and microphysics code, <span>SpK</span>, part of the numerical modelling suite of Imperial College London and First Light Fusion. We extend the capabilities of <span>SpK</span> to allow the calculation of the equation of state (EoS). The detailed configuration accounting calculations are interpolated into finite-temperature Thomas–Fermi calculations at high coupling to form the electronic component of the model. The Cowan model provides the ionic contribution, modified to approximate the physics of diatomic molecular dissociation. By utilising bonding corrections and performing a Maxwell construction, <span>SpK</span> captures the EoS from states ranging from the zero-pressure solid, through the liquid–vapour coexistence region and into plasma states. This global approach offers the benefit of capturing electronic shell structure over large regions of parameter space, building highly-resolved tables in minutes on a simple desktop. We present shock Hugoniot and off-Hugoniot calculations for a number of materials, comparing <span>SpK</span> to other models and experimental data. We also apply EoS and opacity data generated by <span>SpK</span> in integrated simulations of indirectly-driven capsule implosions, highlighting physical sensitivities to the choice of EoS models.</p></div>\",\"PeriodicalId\":49267,\"journal\":{\"name\":\"High Energy Density Physics\",\"volume\":\"53 \",\"pages\":\"Article 101136\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Density Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574181824000612\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181824000612","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

高能量密度物理(HEDP)实验的建模需要全局微观物理模型,这些模型的改进对通向惯性聚变能的道路至关重要。这项工作展示了对原子和微观物理代码 SpK 的进一步开发,SpK 是伦敦帝国学院和 First Light Fusion 数值建模套件的一部分。我们扩展了 SpK 的功能,允许计算状态方程(EoS)。详细的构型核算计算被插值到高耦合的有限温度托马斯-费米计算中,形成模型的电子部分。考恩模型提供了离子部分,并对其进行了修改,以近似二原子分子解离的物理过程。通过利用成键修正和执行麦克斯韦构造,SpK 捕获了从零压固态到液气共存区再到等离子体态的 EoS。这种全局方法的优点是可以捕捉参数空间大范围内的电子壳结构,在简单的桌面上几分钟内就能建立高分辨率的表格。我们介绍了一些材料的休克休轰特和非休克休轰特计算,并将 SpK 与其他模型和实验数据进行了比较。我们还将 SpK 生成的 EoS 和不透明度数据应用于间接驱动的胶囊内爆的综合模拟中,强调了 EoS 模型的选择对物理的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of the SpK atomic physics code to generate global equation of state data

Global microphysics models are required for the modelling of high-energy-density physics (HEDP) experiments, the improvement of which are critical to the path to inertial fusion energy. This work presents further developments to the atomic and microphysics code, SpK, part of the numerical modelling suite of Imperial College London and First Light Fusion. We extend the capabilities of SpK to allow the calculation of the equation of state (EoS). The detailed configuration accounting calculations are interpolated into finite-temperature Thomas–Fermi calculations at high coupling to form the electronic component of the model. The Cowan model provides the ionic contribution, modified to approximate the physics of diatomic molecular dissociation. By utilising bonding corrections and performing a Maxwell construction, SpK captures the EoS from states ranging from the zero-pressure solid, through the liquid–vapour coexistence region and into plasma states. This global approach offers the benefit of capturing electronic shell structure over large regions of parameter space, building highly-resolved tables in minutes on a simple desktop. We present shock Hugoniot and off-Hugoniot calculations for a number of materials, comparing SpK to other models and experimental data. We also apply EoS and opacity data generated by SpK in integrated simulations of indirectly-driven capsule implosions, highlighting physical sensitivities to the choice of EoS models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Energy Density Physics
High Energy Density Physics PHYSICS, FLUIDS & PLASMAS-
CiteScore
4.20
自引率
6.20%
发文量
13
审稿时长
6-12 weeks
期刊介绍: High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings. Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信