{"title":"IDC-CDR:基于意图分离和对比学习的跨域推荐","authors":"Jing Xu, Mingxin Gan, Hang Zhang, Shuhao Zhang","doi":"10.1016/j.ipm.2024.103871","DOIUrl":null,"url":null,"abstract":"<div><p>Using the user’s past activity across different domains, the cross-domain recommendation (CDR) predicts the items that users are likely to click. Most recent studies on CDR model user interests at the item level. However because items in other domains are inherently heterogeneous, direct modeling of past interactions from other domains to augment user representation in the target domain may limit the effectiveness of recommendation. Thus, in order to enhance the performance of cross-domain recommendation, we present a model called Cross-domain Recommendation based on Intent Disentanglement and Contrast Learning (IDC-CDR) that performs contrastive learning at the intent level between domains and disentangles user interaction intents in various domains. Initially, user–item interaction graphs were created for both single-domain and cross-domain scenarios. Then, by modeling the intention distribution of each user–item interaction, the interaction intention graph and its representation were updated repeatedly. The comprehensive local intent is then obtained by fusing the local domain intents of the source domain and the target domain using the attention technique. In order to enhance representation learning and knowledge transfer, we ultimately develop a cross-domain intention contrastive learning method. Using three pairs of cross-domain scenarios from Amazon and the KuaiRand dataset, we carry out comprehensive experiments. The experimental findings demonstrate that the recommendation performance can be greatly enhanced by IDC-CDR, with an average improvement of 20.62% and 25.32% for HR and NDCG metrics, respectively.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"61 6","pages":"Article 103871"},"PeriodicalIF":7.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IDC-CDR: Cross-domain Recommendation based on Intent Disentanglement and Contrast Learning\",\"authors\":\"Jing Xu, Mingxin Gan, Hang Zhang, Shuhao Zhang\",\"doi\":\"10.1016/j.ipm.2024.103871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the user’s past activity across different domains, the cross-domain recommendation (CDR) predicts the items that users are likely to click. Most recent studies on CDR model user interests at the item level. However because items in other domains are inherently heterogeneous, direct modeling of past interactions from other domains to augment user representation in the target domain may limit the effectiveness of recommendation. Thus, in order to enhance the performance of cross-domain recommendation, we present a model called Cross-domain Recommendation based on Intent Disentanglement and Contrast Learning (IDC-CDR) that performs contrastive learning at the intent level between domains and disentangles user interaction intents in various domains. Initially, user–item interaction graphs were created for both single-domain and cross-domain scenarios. Then, by modeling the intention distribution of each user–item interaction, the interaction intention graph and its representation were updated repeatedly. The comprehensive local intent is then obtained by fusing the local domain intents of the source domain and the target domain using the attention technique. In order to enhance representation learning and knowledge transfer, we ultimately develop a cross-domain intention contrastive learning method. Using three pairs of cross-domain scenarios from Amazon and the KuaiRand dataset, we carry out comprehensive experiments. The experimental findings demonstrate that the recommendation performance can be greatly enhanced by IDC-CDR, with an average improvement of 20.62% and 25.32% for HR and NDCG metrics, respectively.</p></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"61 6\",\"pages\":\"Article 103871\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324002309\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002309","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
IDC-CDR: Cross-domain Recommendation based on Intent Disentanglement and Contrast Learning
Using the user’s past activity across different domains, the cross-domain recommendation (CDR) predicts the items that users are likely to click. Most recent studies on CDR model user interests at the item level. However because items in other domains are inherently heterogeneous, direct modeling of past interactions from other domains to augment user representation in the target domain may limit the effectiveness of recommendation. Thus, in order to enhance the performance of cross-domain recommendation, we present a model called Cross-domain Recommendation based on Intent Disentanglement and Contrast Learning (IDC-CDR) that performs contrastive learning at the intent level between domains and disentangles user interaction intents in various domains. Initially, user–item interaction graphs were created for both single-domain and cross-domain scenarios. Then, by modeling the intention distribution of each user–item interaction, the interaction intention graph and its representation were updated repeatedly. The comprehensive local intent is then obtained by fusing the local domain intents of the source domain and the target domain using the attention technique. In order to enhance representation learning and knowledge transfer, we ultimately develop a cross-domain intention contrastive learning method. Using three pairs of cross-domain scenarios from Amazon and the KuaiRand dataset, we carry out comprehensive experiments. The experimental findings demonstrate that the recommendation performance can be greatly enhanced by IDC-CDR, with an average improvement of 20.62% and 25.32% for HR and NDCG metrics, respectively.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.