Ke-Yi Li , Xiao-Wu Tang , Min-Liang Fei , Shi-jin Feng , Jia-jie Tang , Qing-Qing Xiang , Heng-yu Wang
{"title":"基于原位 X 射线计算机断层扫描和数值模拟的针刺无纺土工织物拉伸行为","authors":"Ke-Yi Li , Xiao-Wu Tang , Min-Liang Fei , Shi-jin Feng , Jia-jie Tang , Qing-Qing Xiang , Heng-yu Wang","doi":"10.1016/j.geotexmem.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>There are situations where geotextiles are subjected to uniaxial tensile strain, which may result in noticeable variations in their filtration performance. This study accordingly investigated the behaviors of needle-punched nonwoven geotextiles during tensile testing using in-situ X-ray computed tomography. Furthermore, a numerical analysis of the variation in pore size characteristics was performed by establishing a geotextile model based on the web formation and bonding manufacturing process. The pore size and fiber orientation distributions were subsequently investigated and a model for the changes in the pore characteristics was established and validated. With increasing tension strain in the machine direction, the pore throat size distribution curve exhibited an overall shift towards larger sizes, and the characteristic pore sizes ranging from 10% to 98% either initially decreased, then increased or consistently increased. Furthermore, the fiber distribution was predominantly within the geotextile plane along the machine direction, and as the strain increased, the fibers stretched and aligned along the direction of the tensile load along the machine direction. Finally, the experimental findings of this study and relevant test results from the literature were thoroughly interpreted. The numerical model align well with the actual changes in pore size characteristics observed under tensile strain.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 6","pages":"Pages 1251-1263"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile behavior of needle-punched nonwoven geotextiles based on in-situ X-ray computed tomography and numerical simulation\",\"authors\":\"Ke-Yi Li , Xiao-Wu Tang , Min-Liang Fei , Shi-jin Feng , Jia-jie Tang , Qing-Qing Xiang , Heng-yu Wang\",\"doi\":\"10.1016/j.geotexmem.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There are situations where geotextiles are subjected to uniaxial tensile strain, which may result in noticeable variations in their filtration performance. This study accordingly investigated the behaviors of needle-punched nonwoven geotextiles during tensile testing using in-situ X-ray computed tomography. Furthermore, a numerical analysis of the variation in pore size characteristics was performed by establishing a geotextile model based on the web formation and bonding manufacturing process. The pore size and fiber orientation distributions were subsequently investigated and a model for the changes in the pore characteristics was established and validated. With increasing tension strain in the machine direction, the pore throat size distribution curve exhibited an overall shift towards larger sizes, and the characteristic pore sizes ranging from 10% to 98% either initially decreased, then increased or consistently increased. Furthermore, the fiber distribution was predominantly within the geotextile plane along the machine direction, and as the strain increased, the fibers stretched and aligned along the direction of the tensile load along the machine direction. Finally, the experimental findings of this study and relevant test results from the literature were thoroughly interpreted. The numerical model align well with the actual changes in pore size characteristics observed under tensile strain.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"52 6\",\"pages\":\"Pages 1251-1263\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026611442400092X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442400092X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
摘要
在某些情况下,土工织物会受到单轴拉伸应变,这可能会导致其过滤性能发生明显变化。因此,本研究使用原位 X 射线计算机断层扫描技术研究了针刺无纺土工织物在拉伸测试过程中的行为。此外,还根据土工织物的成网和粘合制造过程建立了一个土工织物模型,对孔径特征的变化进行了数值分析。随后对孔隙大小和纤维取向分布进行了研究,并建立和验证了孔隙特征变化模型。随着机器方向上拉伸应变的增加,孔喉尺寸分布曲线总体上向更大尺寸移动,特征孔径从 10%到 98% 不等,要么最初减小,然后增大,要么持续增大。此外,纤维沿机器方向主要分布在土工织物平面内,随着应变的增加,纤维沿机器方向的拉伸载荷方向拉伸和排列。最后,对本研究的实验结果和文献中的相关测试结果进行了深入解读。数值模型与拉伸应变下观察到的孔径特征的实际变化非常吻合。
Tensile behavior of needle-punched nonwoven geotextiles based on in-situ X-ray computed tomography and numerical simulation
There are situations where geotextiles are subjected to uniaxial tensile strain, which may result in noticeable variations in their filtration performance. This study accordingly investigated the behaviors of needle-punched nonwoven geotextiles during tensile testing using in-situ X-ray computed tomography. Furthermore, a numerical analysis of the variation in pore size characteristics was performed by establishing a geotextile model based on the web formation and bonding manufacturing process. The pore size and fiber orientation distributions were subsequently investigated and a model for the changes in the pore characteristics was established and validated. With increasing tension strain in the machine direction, the pore throat size distribution curve exhibited an overall shift towards larger sizes, and the characteristic pore sizes ranging from 10% to 98% either initially decreased, then increased or consistently increased. Furthermore, the fiber distribution was predominantly within the geotextile plane along the machine direction, and as the strain increased, the fibers stretched and aligned along the direction of the tensile load along the machine direction. Finally, the experimental findings of this study and relevant test results from the literature were thoroughly interpreted. The numerical model align well with the actual changes in pore size characteristics observed under tensile strain.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.