通用证明理论:半解析规则和克雷格插值法

IF 0.6 2区 数学 Q2 LOGIC
Amirhossein Akbar Tabatabai , Raheleh Jalali
{"title":"通用证明理论:半解析规则和克雷格插值法","authors":"Amirhossein Akbar Tabatabai ,&nbsp;Raheleh Jalali","doi":"10.1016/j.apal.2024.103509","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a general and syntactically defined family of sequent calculi, called <em>semi-analytic</em>, to formalize the informal notion of a “nice” sequent calculus. We show that any sufficiently strong (multimodal) substructural logic with a semi-analytic sequent calculus enjoys the Craig Interpolation Property, CIP. As a positive application, our theorem provides a uniform and modular method to prove the CIP for several multimodal substructural logics, including many fragments and variants of linear logic. More interestingly, on the negative side, it employs the lack of the CIP in almost all substructural, superintuitionistic and modal logics to provide a formal proof for the well-known intuition that almost all logics do not have a “nice” sequent calculus. More precisely, we show that many substructural logics including <span><math><mi>U</mi><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>, <span><math><mi>MTL</mi></math></span>, <span><math><mi>R</mi></math></span>, <span>Ł</span><sub><em>n</em></sub> (for <span><math><mi>n</mi><mo>⩾</mo><mn>3</mn></math></span>), <span>G</span><sub><em>n</em></sub> (for <span><math><mi>n</mi><mo>⩾</mo><mn>4</mn></math></span>), and almost all extensions of <span><math><mi>IMTL</mi></math></span>, <span><math><mi>Ł</mi></math></span>, <span><math><mi>BL</mi></math></span>, <span><math><mi>R</mi><msup><mrow><mi>M</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>, <span><math><mi>IPC</mi></math></span>, <span><math><mi>S4</mi></math></span>, and <span><math><mi>Grz</mi></math></span> (except for at most 1, 1, 3, 8, 7, 37, and 6 of them, respectively) do not have a semi-analytic calculus.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 1","pages":"Article 103509"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal proof theory: Semi-analytic rules and Craig interpolation\",\"authors\":\"Amirhossein Akbar Tabatabai ,&nbsp;Raheleh Jalali\",\"doi\":\"10.1016/j.apal.2024.103509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide a general and syntactically defined family of sequent calculi, called <em>semi-analytic</em>, to formalize the informal notion of a “nice” sequent calculus. We show that any sufficiently strong (multimodal) substructural logic with a semi-analytic sequent calculus enjoys the Craig Interpolation Property, CIP. As a positive application, our theorem provides a uniform and modular method to prove the CIP for several multimodal substructural logics, including many fragments and variants of linear logic. More interestingly, on the negative side, it employs the lack of the CIP in almost all substructural, superintuitionistic and modal logics to provide a formal proof for the well-known intuition that almost all logics do not have a “nice” sequent calculus. More precisely, we show that many substructural logics including <span><math><mi>U</mi><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>, <span><math><mi>MTL</mi></math></span>, <span><math><mi>R</mi></math></span>, <span>Ł</span><sub><em>n</em></sub> (for <span><math><mi>n</mi><mo>⩾</mo><mn>3</mn></math></span>), <span>G</span><sub><em>n</em></sub> (for <span><math><mi>n</mi><mo>⩾</mo><mn>4</mn></math></span>), and almost all extensions of <span><math><mi>IMTL</mi></math></span>, <span><math><mi>Ł</mi></math></span>, <span><math><mi>BL</mi></math></span>, <span><math><mi>R</mi><msup><mrow><mi>M</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>, <span><math><mi>IPC</mi></math></span>, <span><math><mi>S4</mi></math></span>, and <span><math><mi>Grz</mi></math></span> (except for at most 1, 1, 3, 8, 7, 37, and 6 of them, respectively) do not have a semi-analytic calculus.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 1\",\"pages\":\"Article 103509\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007224001131\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224001131","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一个通用的、语法上定义的序列计算族,称为半解析序列计算族,以正规化 "好的 "序列计算的非正式概念。我们证明,任何具有半解析序列微积分的足够强的(多模态)子结构逻辑都享有克雷格插值属性(CIP)。作为正面应用,我们的定理提供了一种统一的模块化方法,可以证明几种多模态子结构逻辑(包括线性逻辑的许多片段和变体)的 CIP。更有趣的是,从反面来看,它利用几乎所有子结构、超直觉和模态逻辑都缺乏 CIP 这一事实,为众所周知的直觉提供了形式证明,即几乎所有逻辑都没有 "漂亮的 "序列微积分。更确切地说,我们证明了许多子结构逻辑,包括 UL-、MTL、R、Łn(对于 n⩾3)、Gn(对于 n⩾4),以及 IMTL、Ł、BL、RMe、IPC、S4 和 Grz 的几乎所有扩展(除了其中最多分别有 1、1、3、8、7、37 和 6 个),都没有半解析微积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal proof theory: Semi-analytic rules and Craig interpolation

We provide a general and syntactically defined family of sequent calculi, called semi-analytic, to formalize the informal notion of a “nice” sequent calculus. We show that any sufficiently strong (multimodal) substructural logic with a semi-analytic sequent calculus enjoys the Craig Interpolation Property, CIP. As a positive application, our theorem provides a uniform and modular method to prove the CIP for several multimodal substructural logics, including many fragments and variants of linear logic. More interestingly, on the negative side, it employs the lack of the CIP in almost all substructural, superintuitionistic and modal logics to provide a formal proof for the well-known intuition that almost all logics do not have a “nice” sequent calculus. More precisely, we show that many substructural logics including UL, MTL, R, Łn (for n3), Gn (for n4), and almost all extensions of IMTL, Ł, BL, RMe, IPC, S4, and Grz (except for at most 1, 1, 3, 8, 7, 37, and 6 of them, respectively) do not have a semi-analytic calculus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信