{"title":"全球最佳时间窗内的新型大豆绘图指数","authors":"","doi":"10.1016/j.isprsjprs.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient soybean mapping is critical for agricultural production and yield prediction. However, current sample-driven soybean mapping methods heavily rely on large representative sample datasets, limiting the interpretability of physical mechanisms. Besides, sample-free methods failed to exploit key features that differentiate soybean from other crops, especially Chlorophyll content. Misclassification errors persist and spatiotemporal generalization remains limited. Therefore, this study develops a novel Soybean Mapping Composite Index (SMCI) within a precise Global Optimal Time Window (GOTW). It integrates unique features of soybean Chlorophyll content, canopy water content, and canopy greenness by coupling three red-edge bands (RE2, RE3, and RE4), one near-infrared band, one shortwave infrared band, and two feature indices (Enhanced Vegetation Index and Green Chlorophyll Vegetation Index). The novel index was applied to soybean mapping at six sites in four major soybean producing countries (China, Argentina, Brazil, and the United States) from 2019 to 2021, using an optimal threshold of 3.25. Within the GOTW, the index responds better to spectral features and improves soybean separability. The average overall accuracy (OA: 91%) and average Kappa coefficient (Kappa: 0.83) for the novel index at all sites outperformed the traditional sample-driven Random Forest (RF) method (OA: 84%, Kappa: 0.70) and the existing sample-free index-based Greenness and Water Content Composite Index (GWCCI) (OA: 81%, Kappa: 0.64). Furthermore, interannual transfer experiments consistently showed high accuracy, demonstrating robust spatiotemporal transferability. The proposed SMCI index meets the need for a lightweight and stable soybean mapping tool and serves as a valuable reference for efficient global crop mapping.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel soybean mapping index within the global optimal time window\",\"authors\":\"\",\"doi\":\"10.1016/j.isprsjprs.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient soybean mapping is critical for agricultural production and yield prediction. However, current sample-driven soybean mapping methods heavily rely on large representative sample datasets, limiting the interpretability of physical mechanisms. Besides, sample-free methods failed to exploit key features that differentiate soybean from other crops, especially Chlorophyll content. Misclassification errors persist and spatiotemporal generalization remains limited. Therefore, this study develops a novel Soybean Mapping Composite Index (SMCI) within a precise Global Optimal Time Window (GOTW). It integrates unique features of soybean Chlorophyll content, canopy water content, and canopy greenness by coupling three red-edge bands (RE2, RE3, and RE4), one near-infrared band, one shortwave infrared band, and two feature indices (Enhanced Vegetation Index and Green Chlorophyll Vegetation Index). The novel index was applied to soybean mapping at six sites in four major soybean producing countries (China, Argentina, Brazil, and the United States) from 2019 to 2021, using an optimal threshold of 3.25. Within the GOTW, the index responds better to spectral features and improves soybean separability. The average overall accuracy (OA: 91%) and average Kappa coefficient (Kappa: 0.83) for the novel index at all sites outperformed the traditional sample-driven Random Forest (RF) method (OA: 84%, Kappa: 0.70) and the existing sample-free index-based Greenness and Water Content Composite Index (GWCCI) (OA: 81%, Kappa: 0.64). Furthermore, interannual transfer experiments consistently showed high accuracy, demonstrating robust spatiotemporal transferability. The proposed SMCI index meets the need for a lightweight and stable soybean mapping tool and serves as a valuable reference for efficient global crop mapping.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003174\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003174","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
A novel soybean mapping index within the global optimal time window
Efficient soybean mapping is critical for agricultural production and yield prediction. However, current sample-driven soybean mapping methods heavily rely on large representative sample datasets, limiting the interpretability of physical mechanisms. Besides, sample-free methods failed to exploit key features that differentiate soybean from other crops, especially Chlorophyll content. Misclassification errors persist and spatiotemporal generalization remains limited. Therefore, this study develops a novel Soybean Mapping Composite Index (SMCI) within a precise Global Optimal Time Window (GOTW). It integrates unique features of soybean Chlorophyll content, canopy water content, and canopy greenness by coupling three red-edge bands (RE2, RE3, and RE4), one near-infrared band, one shortwave infrared band, and two feature indices (Enhanced Vegetation Index and Green Chlorophyll Vegetation Index). The novel index was applied to soybean mapping at six sites in four major soybean producing countries (China, Argentina, Brazil, and the United States) from 2019 to 2021, using an optimal threshold of 3.25. Within the GOTW, the index responds better to spectral features and improves soybean separability. The average overall accuracy (OA: 91%) and average Kappa coefficient (Kappa: 0.83) for the novel index at all sites outperformed the traditional sample-driven Random Forest (RF) method (OA: 84%, Kappa: 0.70) and the existing sample-free index-based Greenness and Water Content Composite Index (GWCCI) (OA: 81%, Kappa: 0.64). Furthermore, interannual transfer experiments consistently showed high accuracy, demonstrating robust spatiotemporal transferability. The proposed SMCI index meets the need for a lightweight and stable soybean mapping tool and serves as a valuable reference for efficient global crop mapping.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.