关于径向运输成本经验度量的集中问题

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Martin Larsson, Jonghwa Park, Johannes Wiesel
{"title":"关于径向运输成本经验度量的集中问题","authors":"Martin Larsson,&nbsp;Jonghwa Park,&nbsp;Johannes Wiesel","doi":"10.1016/j.spa.2024.104466","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>μ</mi></math></span> be a probability measure on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> its empirical measure with sample size <span><math><mi>N</mi></math></span>. We prove a concentration inequality for the optimal transport cost between <span><math><mi>μ</mi></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> for radial cost functions with polynomial local growth, that can have superpolynomial global growth. This result generalizes and improves upon estimates of Fournier and Guillin. The proof combines ideas from empirical process theory with known concentration rates for compactly supported <span><math><mi>μ</mi></math></span>. By partitioning <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> into annuli, we infer a global estimate from local estimates on the annuli and conclude that the global estimate can be expressed as a sum of the local estimate and a mean-deviation probability for which efficient bounds are known.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"178 ","pages":"Article 104466"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On concentration of the empirical measure for radial transport costs\",\"authors\":\"Martin Larsson,&nbsp;Jonghwa Park,&nbsp;Johannes Wiesel\",\"doi\":\"10.1016/j.spa.2024.104466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>μ</mi></math></span> be a probability measure on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> its empirical measure with sample size <span><math><mi>N</mi></math></span>. We prove a concentration inequality for the optimal transport cost between <span><math><mi>μ</mi></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> for radial cost functions with polynomial local growth, that can have superpolynomial global growth. This result generalizes and improves upon estimates of Fournier and Guillin. The proof combines ideas from empirical process theory with known concentration rates for compactly supported <span><math><mi>μ</mi></math></span>. By partitioning <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> into annuli, we infer a global estimate from local estimates on the annuli and conclude that the global estimate can be expressed as a sum of the local estimate and a mean-deviation probability for which efficient bounds are known.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"178 \",\"pages\":\"Article 104466\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001728\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001728","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对于具有多项式局部增长的径向成本函数,我们证明了μ和μN 之间最优传输成本的集中不等式。这一结果概括并改进了 Fournier 和 Guillin 的估计。通过将 Rd 划分为环状区域,我们从环状区域上的局部估计值推断出全局估计值,并得出结论:全局估计值可以表示为局部估计值与均方差概率之和,而均方差概率的有效边界是已知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On concentration of the empirical measure for radial transport costs

Let μ be a probability measure on Rd and μN its empirical measure with sample size N. We prove a concentration inequality for the optimal transport cost between μ and μN for radial cost functions with polynomial local growth, that can have superpolynomial global growth. This result generalizes and improves upon estimates of Fournier and Guillin. The proof combines ideas from empirical process theory with known concentration rates for compactly supported μ. By partitioning Rd into annuli, we infer a global estimate from local estimates on the annuli and conclude that the global estimate can be expressed as a sum of the local estimate and a mean-deviation probability for which efficient bounds are known.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信