揭开个性化饮食推荐神经网络的神秘面纱

Carlos Cunha , João Rebelo , Rui Duarte
{"title":"揭开个性化饮食推荐神经网络的神秘面纱","authors":"Carlos Cunha ,&nbsp;João Rebelo ,&nbsp;Rui Duarte","doi":"10.1016/j.procs.2024.08.088","DOIUrl":null,"url":null,"abstract":"<div><p>The growing prevalence of poor nutrition is a major public health concern, as it fuels the rise of various diseases. Obesity, a silent and rapidly growing threat linked to unhealthy eating, is a prime example. Despite the abundance of information on diets and recipes, finding a personalized approach to healthy eating can be a challenge. Recommendation systems can filter from a food logging dataset the information that best suits the nutrition profile of a given user. A powerful tool to use in food recommendation systems is neural networks. However, the user's available data are often limited, which compromises the performance of neural-based food recommendation models. To enhance user trust in food recommendations, this paper proposes a method using a secondary model to predict the errors of the primary neural network, especially when dealing with limited data.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"241 ","pages":"Pages 606-611"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187705092401799X/pdf?md5=7f340af7ed27be1ddd744806a942c04e&pid=1-s2.0-S187705092401799X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unveiling Neural Networks for Personalized Diet Recommendations\",\"authors\":\"Carlos Cunha ,&nbsp;João Rebelo ,&nbsp;Rui Duarte\",\"doi\":\"10.1016/j.procs.2024.08.088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing prevalence of poor nutrition is a major public health concern, as it fuels the rise of various diseases. Obesity, a silent and rapidly growing threat linked to unhealthy eating, is a prime example. Despite the abundance of information on diets and recipes, finding a personalized approach to healthy eating can be a challenge. Recommendation systems can filter from a food logging dataset the information that best suits the nutrition profile of a given user. A powerful tool to use in food recommendation systems is neural networks. However, the user's available data are often limited, which compromises the performance of neural-based food recommendation models. To enhance user trust in food recommendations, this paper proposes a method using a secondary model to predict the errors of the primary neural network, especially when dealing with limited data.</p></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"241 \",\"pages\":\"Pages 606-611\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S187705092401799X/pdf?md5=7f340af7ed27be1ddd744806a942c04e&pid=1-s2.0-S187705092401799X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187705092401799X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187705092401799X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

营养不良日益普遍是一个重大的公共卫生问题,因为它助长了各种疾病的增加。肥胖症就是一个典型的例子,它是一种与不健康饮食有关的无声且快速增长的威胁。尽管有关饮食和食谱的信息非常丰富,但要找到个性化的健康饮食方法仍是一项挑战。推荐系统可以从食物记录数据集中筛选出最适合特定用户营养状况的信息。神经网络是食品推荐系统的一个强大工具。然而,用户的可用数据往往有限,这影响了基于神经网络的食物推荐模型的性能。为了提高用户对食品推荐的信任度,本文提出了一种使用二级模型预测一级神经网络误差的方法,尤其是在处理有限数据时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling Neural Networks for Personalized Diet Recommendations

The growing prevalence of poor nutrition is a major public health concern, as it fuels the rise of various diseases. Obesity, a silent and rapidly growing threat linked to unhealthy eating, is a prime example. Despite the abundance of information on diets and recipes, finding a personalized approach to healthy eating can be a challenge. Recommendation systems can filter from a food logging dataset the information that best suits the nutrition profile of a given user. A powerful tool to use in food recommendation systems is neural networks. However, the user's available data are often limited, which compromises the performance of neural-based food recommendation models. To enhance user trust in food recommendations, this paper proposes a method using a secondary model to predict the errors of the primary neural network, especially when dealing with limited data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信