使用基于 BERT 的模型对临床试验进行生物医学自然语言推理

Ayesha Seerat , Sarah Nasir , Muhammad Wasim , Nuno M. Garcia
{"title":"使用基于 BERT 的模型对临床试验进行生物医学自然语言推理","authors":"Ayesha Seerat ,&nbsp;Sarah Nasir ,&nbsp;Muhammad Wasim ,&nbsp;Nuno M. Garcia","doi":"10.1016/j.procs.2024.08.083","DOIUrl":null,"url":null,"abstract":"<div><p>Clinical trials are crucial in experimental medicine as they assess the safety and efficiency of new treatments. Due to its unstructured and plain language nature, clinical text data often presents challenges in understanding the relationships between various elements like disease, symptoms, diagnosis, and treatment. This task is challenging as the Multi-evidence Natural Language Inference for Clinical Trial Data (NLI4CT) requires intricate reasoning involving textual and numerical elements. It involves integrating information from one or two Clinical Trial Reports (CTRs) to validate hypotheses, demanding a multi-faceted approach. To address these problems, we use BERT-base models’ ability to predict entailment or contradiction labels and compare the use of transformer-based feature extraction and pre-trained models. We utilize seven pre-trained models, including six BERT-based and one T5-based model: BERT-base uncased, BioBERT-base-cased-v1.1-mnli, DeBERTa-v3-base-mnli-fever-anli, DeBERTa-v3-base-mnli-fever-docnli-ling-2c, DeBERTa-large-mnli, BioLinkBERT-base, and Flan-T5-base. We achieve an F1-score of 61% on both DeBERTa-v3-base-mnli-fever-anli and DeBERTa-large-mnli models and 95% faithfulness on the BioLinkBERT-base model.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"241 ","pages":"Pages 576-581"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877050924017940/pdf?md5=6bf6dec48ae67280955e31952f52981f&pid=1-s2.0-S1877050924017940-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomedical Natural Language Inference on Clinical trials using the BERT-based Models\",\"authors\":\"Ayesha Seerat ,&nbsp;Sarah Nasir ,&nbsp;Muhammad Wasim ,&nbsp;Nuno M. Garcia\",\"doi\":\"10.1016/j.procs.2024.08.083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Clinical trials are crucial in experimental medicine as they assess the safety and efficiency of new treatments. Due to its unstructured and plain language nature, clinical text data often presents challenges in understanding the relationships between various elements like disease, symptoms, diagnosis, and treatment. This task is challenging as the Multi-evidence Natural Language Inference for Clinical Trial Data (NLI4CT) requires intricate reasoning involving textual and numerical elements. It involves integrating information from one or two Clinical Trial Reports (CTRs) to validate hypotheses, demanding a multi-faceted approach. To address these problems, we use BERT-base models’ ability to predict entailment or contradiction labels and compare the use of transformer-based feature extraction and pre-trained models. We utilize seven pre-trained models, including six BERT-based and one T5-based model: BERT-base uncased, BioBERT-base-cased-v1.1-mnli, DeBERTa-v3-base-mnli-fever-anli, DeBERTa-v3-base-mnli-fever-docnli-ling-2c, DeBERTa-large-mnli, BioLinkBERT-base, and Flan-T5-base. We achieve an F1-score of 61% on both DeBERTa-v3-base-mnli-fever-anli and DeBERTa-large-mnli models and 95% faithfulness on the BioLinkBERT-base model.</p></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"241 \",\"pages\":\"Pages 576-581\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877050924017940/pdf?md5=6bf6dec48ae67280955e31952f52981f&pid=1-s2.0-S1877050924017940-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050924017940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924017940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

临床试验在实验医学中至关重要,因为它们可以评估新疗法的安全性和有效性。由于临床文本数据具有非结构化和纯语言的特点,因此在理解疾病、症状、诊断和治疗等各种要素之间的关系时往往面临挑战。由于临床试验数据的多证据自然语言推理(NLI4CT)需要涉及文本和数字元素的复杂推理,因此这项任务极具挑战性。它需要整合来自一份或两份临床试验报告(CTR)的信息来验证假设,这就要求采用多方面的方法。为了解决这些问题,我们利用 BERT 基础模型预测包含或矛盾标签的能力,并比较了基于转换器的特征提取和预训练模型的使用情况。我们使用了七个预训练模型,包括六个基于 BERT 的模型和一个基于 T5 的模型:这些模型包括:BERT-base uncased、BioBERT-base-cased-v1.1-mnli、DeBERTa-v3-base-mnli-fever-anli、DeBERTa-v3-base-mnli-fever-docnli-ling-2c、DeBERTa-large-mnli、BioLinkBERT-base 和 Flan-T5-base。我们在 DeBERTa-v3-base-mnli-fever-anli 和 DeBERTa-large-mnli 模型上取得了 61% 的 F1 分数,在 BioLinkBERT-base 模型上取得了 95% 的忠实度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomedical Natural Language Inference on Clinical trials using the BERT-based Models

Clinical trials are crucial in experimental medicine as they assess the safety and efficiency of new treatments. Due to its unstructured and plain language nature, clinical text data often presents challenges in understanding the relationships between various elements like disease, symptoms, diagnosis, and treatment. This task is challenging as the Multi-evidence Natural Language Inference for Clinical Trial Data (NLI4CT) requires intricate reasoning involving textual and numerical elements. It involves integrating information from one or two Clinical Trial Reports (CTRs) to validate hypotheses, demanding a multi-faceted approach. To address these problems, we use BERT-base models’ ability to predict entailment or contradiction labels and compare the use of transformer-based feature extraction and pre-trained models. We utilize seven pre-trained models, including six BERT-based and one T5-based model: BERT-base uncased, BioBERT-base-cased-v1.1-mnli, DeBERTa-v3-base-mnli-fever-anli, DeBERTa-v3-base-mnli-fever-docnli-ling-2c, DeBERTa-large-mnli, BioLinkBERT-base, and Flan-T5-base. We achieve an F1-score of 61% on both DeBERTa-v3-base-mnli-fever-anli and DeBERTa-large-mnli models and 95% faithfulness on the BioLinkBERT-base model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信