{"title":"利用梯度转移学习长尾分布下的盒式回归和掩码分割","authors":"Tao Wang, Li Yuan, Xinchao Wang, Jiashi Feng","doi":"10.1007/s11263-024-02104-9","DOIUrl":null,"url":null,"abstract":"<p>Learning object detectors under long-tailed data distribution is challenging and has been widely studied recently, the prior works mainly focus on balancing the learning signal of classification task such that samples from tail object classes are effectively recognized. However, the learning difficulty of other class-wise tasks including bounding box regression and mask segmentation are not explored before. In this work, we investigate how long-tailed distribution affects the optimization of box regression and mask segmentation tasks. We find that although the standard class-wise box regression and mask segmentation offer strong class-specific prediction, they suffer from limited training signal and instability on the tail object classes. Aiming to address the limitation, our insight is that the knowledge of box regression and object segmentation is naturally shared across classes. We thus develop a cross class gradient transfusing (CRAT) approach to transfer the abundant training signal from head classes to help the training of sample-scarce tail classes. The transferring process is guided by the Fisher information to aggregate useful signals. CRAT can be seamlessly integrated into existing end-to-end or decoupled long-tailed object detection pipelines to robustly learn class-wise box regression and mask segmentation under long-tailed distribution. Our method improves the state-of-the-art long-tailed object detection and instance segmentation models with an average of 3.0 tail AP on the LVIS benchmark. The code implementation will be available at https://github.com/twangnh/CRAT</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"5 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Box Regression and Mask Segmentation Under Long-Tailed Distribution with Gradient Transfusing\",\"authors\":\"Tao Wang, Li Yuan, Xinchao Wang, Jiashi Feng\",\"doi\":\"10.1007/s11263-024-02104-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Learning object detectors under long-tailed data distribution is challenging and has been widely studied recently, the prior works mainly focus on balancing the learning signal of classification task such that samples from tail object classes are effectively recognized. However, the learning difficulty of other class-wise tasks including bounding box regression and mask segmentation are not explored before. In this work, we investigate how long-tailed distribution affects the optimization of box regression and mask segmentation tasks. We find that although the standard class-wise box regression and mask segmentation offer strong class-specific prediction, they suffer from limited training signal and instability on the tail object classes. Aiming to address the limitation, our insight is that the knowledge of box regression and object segmentation is naturally shared across classes. We thus develop a cross class gradient transfusing (CRAT) approach to transfer the abundant training signal from head classes to help the training of sample-scarce tail classes. The transferring process is guided by the Fisher information to aggregate useful signals. CRAT can be seamlessly integrated into existing end-to-end or decoupled long-tailed object detection pipelines to robustly learn class-wise box regression and mask segmentation under long-tailed distribution. Our method improves the state-of-the-art long-tailed object detection and instance segmentation models with an average of 3.0 tail AP on the LVIS benchmark. The code implementation will be available at https://github.com/twangnh/CRAT</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02104-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02104-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning Box Regression and Mask Segmentation Under Long-Tailed Distribution with Gradient Transfusing
Learning object detectors under long-tailed data distribution is challenging and has been widely studied recently, the prior works mainly focus on balancing the learning signal of classification task such that samples from tail object classes are effectively recognized. However, the learning difficulty of other class-wise tasks including bounding box regression and mask segmentation are not explored before. In this work, we investigate how long-tailed distribution affects the optimization of box regression and mask segmentation tasks. We find that although the standard class-wise box regression and mask segmentation offer strong class-specific prediction, they suffer from limited training signal and instability on the tail object classes. Aiming to address the limitation, our insight is that the knowledge of box regression and object segmentation is naturally shared across classes. We thus develop a cross class gradient transfusing (CRAT) approach to transfer the abundant training signal from head classes to help the training of sample-scarce tail classes. The transferring process is guided by the Fisher information to aggregate useful signals. CRAT can be seamlessly integrated into existing end-to-end or decoupled long-tailed object detection pipelines to robustly learn class-wise box regression and mask segmentation under long-tailed distribution. Our method improves the state-of-the-art long-tailed object detection and instance segmentation models with an average of 3.0 tail AP on the LVIS benchmark. The code implementation will be available at https://github.com/twangnh/CRAT
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.