{"title":"广义变量分离法及其比较:高维度时间分数非线性 PDE 的精确解法","authors":"P. Prakash, K. S. Priyendhu, R. Sahadevan","doi":"10.1007/s13540-024-00330-z","DOIUrl":null,"url":null,"abstract":"<p>A systematic investigation of the significance and applicability of two different approaches of generalized separation of variable (GSV) methods for time-fractional nonlinear PDEs in <span>\\((2+1)\\)</span> and <span>\\((m+1)\\)</span>-dimensions is presented. Also, this work explicitly shows that while constructing the exact solutions of time-fractional nonlinear PDEs in <span>\\((2+1)\\)</span> and <span>\\((m+1)\\)</span>-dimensions without and with delay terms, how to overcome unusual (non-standard) properties of singular kernel fractional derivatives such as chain rule, semigroup property, and the Leibniz rule. Moreover, the importance and effectiveness of the two GSV methods have been discussed through the initial and boundary value problems of the time-fractional nonlinear generalized convection-diffusion equation in <span>\\((2+1)\\)</span>-dimensions. Additionally, the discussed methods extended to find the exact solutions of time-fractional nonlinear PDEs in <span>\\((2+1)\\)</span> and <span>\\((m+1)\\)</span>-dimensions involving multiple linear time-delay terms along with appropriate examples. Also, this work investigates the comparative study of the obtained results and solutions of the underlying equations using the two GSV methods, along with the 2D and 3D graphical representations.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"51 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized separation of variable methods with their comparison: exact solutions of time-fractional nonlinear PDEs in higher dimensions\",\"authors\":\"P. Prakash, K. S. Priyendhu, R. Sahadevan\",\"doi\":\"10.1007/s13540-024-00330-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A systematic investigation of the significance and applicability of two different approaches of generalized separation of variable (GSV) methods for time-fractional nonlinear PDEs in <span>\\\\((2+1)\\\\)</span> and <span>\\\\((m+1)\\\\)</span>-dimensions is presented. Also, this work explicitly shows that while constructing the exact solutions of time-fractional nonlinear PDEs in <span>\\\\((2+1)\\\\)</span> and <span>\\\\((m+1)\\\\)</span>-dimensions without and with delay terms, how to overcome unusual (non-standard) properties of singular kernel fractional derivatives such as chain rule, semigroup property, and the Leibniz rule. Moreover, the importance and effectiveness of the two GSV methods have been discussed through the initial and boundary value problems of the time-fractional nonlinear generalized convection-diffusion equation in <span>\\\\((2+1)\\\\)</span>-dimensions. Additionally, the discussed methods extended to find the exact solutions of time-fractional nonlinear PDEs in <span>\\\\((2+1)\\\\)</span> and <span>\\\\((m+1)\\\\)</span>-dimensions involving multiple linear time-delay terms along with appropriate examples. Also, this work investigates the comparative study of the obtained results and solutions of the underlying equations using the two GSV methods, along with the 2D and 3D graphical representations.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00330-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00330-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Generalized separation of variable methods with their comparison: exact solutions of time-fractional nonlinear PDEs in higher dimensions
A systematic investigation of the significance and applicability of two different approaches of generalized separation of variable (GSV) methods for time-fractional nonlinear PDEs in \((2+1)\) and \((m+1)\)-dimensions is presented. Also, this work explicitly shows that while constructing the exact solutions of time-fractional nonlinear PDEs in \((2+1)\) and \((m+1)\)-dimensions without and with delay terms, how to overcome unusual (non-standard) properties of singular kernel fractional derivatives such as chain rule, semigroup property, and the Leibniz rule. Moreover, the importance and effectiveness of the two GSV methods have been discussed through the initial and boundary value problems of the time-fractional nonlinear generalized convection-diffusion equation in \((2+1)\)-dimensions. Additionally, the discussed methods extended to find the exact solutions of time-fractional nonlinear PDEs in \((2+1)\) and \((m+1)\)-dimensions involving multiple linear time-delay terms along with appropriate examples. Also, this work investigates the comparative study of the obtained results and solutions of the underlying equations using the two GSV methods, along with the 2D and 3D graphical representations.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.