{"title":"论有限域上某些奇度不可还原多项式的构造","authors":"Melek Çil, Barış Bülent Kırlar","doi":"10.1007/s10623-024-01479-7","DOIUrl":null,"url":null,"abstract":"<p>For an odd prime power <i>q</i>, let <span>\\(\\mathbb {F}_{q^2}=\\mathbb {F}_q(\\alpha )\\)</span>, <span>\\(\\alpha ^2=t\\in \\mathbb {F}_q\\)</span> be the quadratic extension of the finite field <span>\\(\\mathbb {F}_q\\)</span>. In this paper, we consider the irreducible polynomials <span>\\(F(x)=x^k-c_1x^{k-1}+c_2x^{k-2}-\\cdots -c_{2}^qx^2+c_{1}^qx-1\\)</span> over <span>\\(\\mathbb {F}_{q^2}\\)</span>, where <i>k</i> is an odd integer and the coefficients <span>\\(c_i\\)</span> are in the form <span>\\(c_i=a_i+b_i\\alpha \\)</span> with at least one <span>\\(b_i\\ne 0\\)</span>. For a given such irreducible polynomial <i>F</i>(<i>x</i>) over <span>\\(\\mathbb {F}_{q^2}\\)</span>, we provide an algorithm to construct an irreducible polynomial <span>\\(G(x)=x^k-A_1x^{k-1}+A_2x^{k-2}-\\cdots -A_{k-2}x^2+A_{k-1}x-A_k\\)</span> over <span>\\(\\mathbb {F}_q\\)</span>, where the <span>\\(A_i\\)</span>’s are explicitly given in terms of the <span>\\(c_i\\)</span>’s. This gives a bijective correspondence between irreducible polynomials over <span>\\(\\mathbb {F}_{q^2}\\)</span> and <span>\\(\\mathbb {F}_q\\)</span>. This fact generalizes many recent results on this subject in the literature.\n</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"8 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the construction of certain odd degree irreducible polynomials over finite fields\",\"authors\":\"Melek Çil, Barış Bülent Kırlar\",\"doi\":\"10.1007/s10623-024-01479-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an odd prime power <i>q</i>, let <span>\\\\(\\\\mathbb {F}_{q^2}=\\\\mathbb {F}_q(\\\\alpha )\\\\)</span>, <span>\\\\(\\\\alpha ^2=t\\\\in \\\\mathbb {F}_q\\\\)</span> be the quadratic extension of the finite field <span>\\\\(\\\\mathbb {F}_q\\\\)</span>. In this paper, we consider the irreducible polynomials <span>\\\\(F(x)=x^k-c_1x^{k-1}+c_2x^{k-2}-\\\\cdots -c_{2}^qx^2+c_{1}^qx-1\\\\)</span> over <span>\\\\(\\\\mathbb {F}_{q^2}\\\\)</span>, where <i>k</i> is an odd integer and the coefficients <span>\\\\(c_i\\\\)</span> are in the form <span>\\\\(c_i=a_i+b_i\\\\alpha \\\\)</span> with at least one <span>\\\\(b_i\\\\ne 0\\\\)</span>. For a given such irreducible polynomial <i>F</i>(<i>x</i>) over <span>\\\\(\\\\mathbb {F}_{q^2}\\\\)</span>, we provide an algorithm to construct an irreducible polynomial <span>\\\\(G(x)=x^k-A_1x^{k-1}+A_2x^{k-2}-\\\\cdots -A_{k-2}x^2+A_{k-1}x-A_k\\\\)</span> over <span>\\\\(\\\\mathbb {F}_q\\\\)</span>, where the <span>\\\\(A_i\\\\)</span>’s are explicitly given in terms of the <span>\\\\(c_i\\\\)</span>’s. This gives a bijective correspondence between irreducible polynomials over <span>\\\\(\\\\mathbb {F}_{q^2}\\\\)</span> and <span>\\\\(\\\\mathbb {F}_q\\\\)</span>. This fact generalizes many recent results on this subject in the literature.\\n</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01479-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01479-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
On the construction of certain odd degree irreducible polynomials over finite fields
For an odd prime power q, let \(\mathbb {F}_{q^2}=\mathbb {F}_q(\alpha )\), \(\alpha ^2=t\in \mathbb {F}_q\) be the quadratic extension of the finite field \(\mathbb {F}_q\). In this paper, we consider the irreducible polynomials \(F(x)=x^k-c_1x^{k-1}+c_2x^{k-2}-\cdots -c_{2}^qx^2+c_{1}^qx-1\) over \(\mathbb {F}_{q^2}\), where k is an odd integer and the coefficients \(c_i\) are in the form \(c_i=a_i+b_i\alpha \) with at least one \(b_i\ne 0\). For a given such irreducible polynomial F(x) over \(\mathbb {F}_{q^2}\), we provide an algorithm to construct an irreducible polynomial \(G(x)=x^k-A_1x^{k-1}+A_2x^{k-2}-\cdots -A_{k-2}x^2+A_{k-1}x-A_k\) over \(\mathbb {F}_q\), where the \(A_i\)’s are explicitly given in terms of the \(c_i\)’s. This gives a bijective correspondence between irreducible polynomials over \(\mathbb {F}_{q^2}\) and \(\mathbb {F}_q\). This fact generalizes many recent results on this subject in the literature.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.