{"title":"针对无限方差过程环境的鲁棒分数低阶多窗 STFT","authors":"Haibin Wang, Changshou Deng, Junbo Long, Youxue Zhou","doi":"10.1049/2024/7605121","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Mechanical fault vibration signal is a typical non-Gaussian process, they can be characterized by the infinite variance process, and the noise within these signals may also be the process in complex environments. The performance of the traditional cross-term reduction algorithm is compromised, sometimes yielding incorrect results under the infinite variance process environment. Several robust fractional lower order time–frequency representation methods are proposed including fractional low-order smoothed pseudo Wigner (FLOSPW), fractional low-order multi-windowed short-time Fourier transform (FLOMWSTFT), and improved fractional low-order multi-windowed short-time Fourier transform (IFLOMWSTFT) utilizing fractional low-order statistics and short-time Fourier transform (STFT) to mitigate cross-terms, enhance time–frequency resolution, and accommodate the infinite variance process environment. When compared to traditional methods, simulation results indicate that they effectively suppress the pulse noise and function effectively in lower mixed signal noise ratio (MSNR) in an infinite variance process environment. The efficacy of the proposed time–frequency algorithm is validated through its application to mechanical bearing outer ring fault vibration signals contaminated with Gaussian noise and subjected to an <i>α</i> infinite variance process.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7605121","citationCount":"0","resultStr":"{\"title\":\"Robust Fractional Low-Order Multiple Window STFT for Infinite Variance Process Environment\",\"authors\":\"Haibin Wang, Changshou Deng, Junbo Long, Youxue Zhou\",\"doi\":\"10.1049/2024/7605121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Mechanical fault vibration signal is a typical non-Gaussian process, they can be characterized by the infinite variance process, and the noise within these signals may also be the process in complex environments. The performance of the traditional cross-term reduction algorithm is compromised, sometimes yielding incorrect results under the infinite variance process environment. Several robust fractional lower order time–frequency representation methods are proposed including fractional low-order smoothed pseudo Wigner (FLOSPW), fractional low-order multi-windowed short-time Fourier transform (FLOMWSTFT), and improved fractional low-order multi-windowed short-time Fourier transform (IFLOMWSTFT) utilizing fractional low-order statistics and short-time Fourier transform (STFT) to mitigate cross-terms, enhance time–frequency resolution, and accommodate the infinite variance process environment. When compared to traditional methods, simulation results indicate that they effectively suppress the pulse noise and function effectively in lower mixed signal noise ratio (MSNR) in an infinite variance process environment. The efficacy of the proposed time–frequency algorithm is validated through its application to mechanical bearing outer ring fault vibration signals contaminated with Gaussian noise and subjected to an <i>α</i> infinite variance process.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7605121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/7605121\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/7605121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Robust Fractional Low-Order Multiple Window STFT for Infinite Variance Process Environment
Mechanical fault vibration signal is a typical non-Gaussian process, they can be characterized by the infinite variance process, and the noise within these signals may also be the process in complex environments. The performance of the traditional cross-term reduction algorithm is compromised, sometimes yielding incorrect results under the infinite variance process environment. Several robust fractional lower order time–frequency representation methods are proposed including fractional low-order smoothed pseudo Wigner (FLOSPW), fractional low-order multi-windowed short-time Fourier transform (FLOMWSTFT), and improved fractional low-order multi-windowed short-time Fourier transform (IFLOMWSTFT) utilizing fractional low-order statistics and short-time Fourier transform (STFT) to mitigate cross-terms, enhance time–frequency resolution, and accommodate the infinite variance process environment. When compared to traditional methods, simulation results indicate that they effectively suppress the pulse noise and function effectively in lower mixed signal noise ratio (MSNR) in an infinite variance process environment. The efficacy of the proposed time–frequency algorithm is validated through its application to mechanical bearing outer ring fault vibration signals contaminated with Gaussian noise and subjected to an α infinite variance process.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf