{"title":"用于溃疡性结肠炎洗胃微生物群移植临床决策的预测性机器学习模型","authors":"","doi":"10.1016/j.csbj.2024.08.021","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Aim</h3><p>Machine learning based on clinical data and treatment protocols for better clinical decision-making is a current research hotspot. This study aimed to build a machine learning model on washed microbiota transplantation (WMT) for ulcerative colitis (UC), providing patients and clinicians with a new evaluation system to optimize clinical decision-making.</p><p><strong>Methods</strong></p><p>Patients with UC who underwent WMT via mid-gut or colonic delivery route at an affiliated hospital of Nanjing Medical University from April 2013 to June 2022 were recruited. Model ensembles based on the clinical indicators were constructed by machine-learning to predict the clinical response of WMT after one month.</p><p><strong>Results</strong></p><p>A total of 366 patients were enrolled in this study, with 210 patients allocated for training and internal validation, and 156 patients for external validation. The low level of indirect bilirubin, activated antithrombin III, defecation frequency and cholinesterase and the elderly and high level of creatine kinase, HCO<sub>3</sub><sup>-</sup> and thrombin time were related to the clinical response of WMT at one month. Besides, the voting ensembles exhibited an area under curve (AUC) of 0.769 ± 0.019 [accuracy, 0.754; F1-score, 0.845] in the internal validation; the AUC of the external validation was 0.614 ± 0.017 [accuracy, 0.801; F1-score, 0.887]. Additionally, the model was available at <span><span>https://wmtpredict.streamlit.app</span><svg><path></path></svg></span>.</p><p><strong>Conclusions</strong></p><p>This study pioneered the development of a machine learning model to predict the one-month clinical response of WMT on UC. The findings demonstrate the potential value of machine learning applications in the field of WMT, opening new avenues for personalized treatment strategies in gastrointestinal disorders.</p><p><strong>Trial registration</strong></p><p>clinical trials, NCT01790061. Registered 09 February 2013 - Retrospectively registered, <span><span>https://clinicaltrials.gov/study/NCT01790061</span><svg><path></path></svg></span></p></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2001037024002800/pdfft?md5=507581078570f5931730f762bd1204f8&pid=1-s2.0-S2001037024002800-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A predictive machine-learning model for clinical decision-making in washed microbiota transplantation on ulcerative colitis\",\"authors\":\"\",\"doi\":\"10.1016/j.csbj.2024.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Aim</h3><p>Machine learning based on clinical data and treatment protocols for better clinical decision-making is a current research hotspot. This study aimed to build a machine learning model on washed microbiota transplantation (WMT) for ulcerative colitis (UC), providing patients and clinicians with a new evaluation system to optimize clinical decision-making.</p><p><strong>Methods</strong></p><p>Patients with UC who underwent WMT via mid-gut or colonic delivery route at an affiliated hospital of Nanjing Medical University from April 2013 to June 2022 were recruited. Model ensembles based on the clinical indicators were constructed by machine-learning to predict the clinical response of WMT after one month.</p><p><strong>Results</strong></p><p>A total of 366 patients were enrolled in this study, with 210 patients allocated for training and internal validation, and 156 patients for external validation. The low level of indirect bilirubin, activated antithrombin III, defecation frequency and cholinesterase and the elderly and high level of creatine kinase, HCO<sub>3</sub><sup>-</sup> and thrombin time were related to the clinical response of WMT at one month. Besides, the voting ensembles exhibited an area under curve (AUC) of 0.769 ± 0.019 [accuracy, 0.754; F1-score, 0.845] in the internal validation; the AUC of the external validation was 0.614 ± 0.017 [accuracy, 0.801; F1-score, 0.887]. Additionally, the model was available at <span><span>https://wmtpredict.streamlit.app</span><svg><path></path></svg></span>.</p><p><strong>Conclusions</strong></p><p>This study pioneered the development of a machine learning model to predict the one-month clinical response of WMT on UC. The findings demonstrate the potential value of machine learning applications in the field of WMT, opening new avenues for personalized treatment strategies in gastrointestinal disorders.</p><p><strong>Trial registration</strong></p><p>clinical trials, NCT01790061. Registered 09 February 2013 - Retrospectively registered, <span><span>https://clinicaltrials.gov/study/NCT01790061</span><svg><path></path></svg></span></p></div>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2001037024002800/pdfft?md5=507581078570f5931730f762bd1204f8&pid=1-s2.0-S2001037024002800-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2001037024002800\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024002800","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A predictive machine-learning model for clinical decision-making in washed microbiota transplantation on ulcerative colitis
Background and Aim
Machine learning based on clinical data and treatment protocols for better clinical decision-making is a current research hotspot. This study aimed to build a machine learning model on washed microbiota transplantation (WMT) for ulcerative colitis (UC), providing patients and clinicians with a new evaluation system to optimize clinical decision-making.
Methods
Patients with UC who underwent WMT via mid-gut or colonic delivery route at an affiliated hospital of Nanjing Medical University from April 2013 to June 2022 were recruited. Model ensembles based on the clinical indicators were constructed by machine-learning to predict the clinical response of WMT after one month.
Results
A total of 366 patients were enrolled in this study, with 210 patients allocated for training and internal validation, and 156 patients for external validation. The low level of indirect bilirubin, activated antithrombin III, defecation frequency and cholinesterase and the elderly and high level of creatine kinase, HCO3- and thrombin time were related to the clinical response of WMT at one month. Besides, the voting ensembles exhibited an area under curve (AUC) of 0.769 ± 0.019 [accuracy, 0.754; F1-score, 0.845] in the internal validation; the AUC of the external validation was 0.614 ± 0.017 [accuracy, 0.801; F1-score, 0.887]. Additionally, the model was available at https://wmtpredict.streamlit.app.
Conclusions
This study pioneered the development of a machine learning model to predict the one-month clinical response of WMT on UC. The findings demonstrate the potential value of machine learning applications in the field of WMT, opening new avenues for personalized treatment strategies in gastrointestinal disorders.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology