{"title":"通过几何精确梁理论设计顺应式可展开机构的总体框架","authors":"","doi":"10.1016/j.mechmachtheory.2024.105778","DOIUrl":null,"url":null,"abstract":"<div><p>Compliant deployable mechanisms (CDMs), as a novel and promising type of mechanisms, have been gradually used in medical industry, aerospace and other engineering fields that require high space utilization and compactness. Therefore, it is necessary to develop a general and efficient methodology to design and analyze CDMs. This paper proposes a general framework for designing and analyzing CDMs. The proposed framework has been verified by finite element method (FEM) first. Then, for practical validation, we design two types of compliant deployable mechanisms for different application scenarios within this framework, and experimental testing has been conducted to prove the feasibility of the proposed framework. Compared to the existing methods for designing CDMs, this framework demonstrates a more general scheme where different engineering scenarios can be taken into account to meet the design requirements, presenting several desired advantages over the existing methods, such as higher accuracy and less computational expense.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general framework for designing compliant deployable mechanisms via geometrically exact beam theory\",\"authors\":\"\",\"doi\":\"10.1016/j.mechmachtheory.2024.105778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compliant deployable mechanisms (CDMs), as a novel and promising type of mechanisms, have been gradually used in medical industry, aerospace and other engineering fields that require high space utilization and compactness. Therefore, it is necessary to develop a general and efficient methodology to design and analyze CDMs. This paper proposes a general framework for designing and analyzing CDMs. The proposed framework has been verified by finite element method (FEM) first. Then, for practical validation, we design two types of compliant deployable mechanisms for different application scenarios within this framework, and experimental testing has been conducted to prove the feasibility of the proposed framework. Compared to the existing methods for designing CDMs, this framework demonstrates a more general scheme where different engineering scenarios can be taken into account to meet the design requirements, presenting several desired advantages over the existing methods, such as higher accuracy and less computational expense.</p></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24002052\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002052","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A general framework for designing compliant deployable mechanisms via geometrically exact beam theory
Compliant deployable mechanisms (CDMs), as a novel and promising type of mechanisms, have been gradually used in medical industry, aerospace and other engineering fields that require high space utilization and compactness. Therefore, it is necessary to develop a general and efficient methodology to design and analyze CDMs. This paper proposes a general framework for designing and analyzing CDMs. The proposed framework has been verified by finite element method (FEM) first. Then, for practical validation, we design two types of compliant deployable mechanisms for different application scenarios within this framework, and experimental testing has been conducted to prove the feasibility of the proposed framework. Compared to the existing methods for designing CDMs, this framework demonstrates a more general scheme where different engineering scenarios can be taken into account to meet the design requirements, presenting several desired advantages over the existing methods, such as higher accuracy and less computational expense.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry