{"title":"具有微分隐私的切片反回归的最小收敛率","authors":"Wenbiao Zhao , Xuehu Zhu , Lixing Zhu","doi":"10.1016/j.csda.2024.108041","DOIUrl":null,"url":null,"abstract":"<div><p>Sliced inverse regression (SIR) is a highly efficient paradigm used for the purpose of dimension reduction by replacing high-dimensional covariates with a limited number of linear combinations. This paper focuses on the implementation of the classical SIR approach integrated with a Gaussian differential privacy mechanism to estimate the central space while preserving privacy. We illustrate the tradeoff between statistical accuracy and privacy in sufficient dimension reduction problems under both the classical low- dimensional and modern high-dimensional settings. Additionally, we achieve the minimax rate of the proposed estimator with Gaussian differential privacy constraint and illustrate that this rate is also optimal for multiple index models with bounded dimension of the central space. Extensive numerical studies on synthetic data sets are conducted to assess the effectiveness of the proposed technique in finite sample scenarios, and a real data analysis is presented to showcase its practical application.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"201 ","pages":"Article 108041"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001257/pdfft?md5=cab1d33929cc2c1071e939e0580ca683&pid=1-s2.0-S0167947324001257-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Minimax rates of convergence for sliced inverse regression with differential privacy\",\"authors\":\"Wenbiao Zhao , Xuehu Zhu , Lixing Zhu\",\"doi\":\"10.1016/j.csda.2024.108041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sliced inverse regression (SIR) is a highly efficient paradigm used for the purpose of dimension reduction by replacing high-dimensional covariates with a limited number of linear combinations. This paper focuses on the implementation of the classical SIR approach integrated with a Gaussian differential privacy mechanism to estimate the central space while preserving privacy. We illustrate the tradeoff between statistical accuracy and privacy in sufficient dimension reduction problems under both the classical low- dimensional and modern high-dimensional settings. Additionally, we achieve the minimax rate of the proposed estimator with Gaussian differential privacy constraint and illustrate that this rate is also optimal for multiple index models with bounded dimension of the central space. Extensive numerical studies on synthetic data sets are conducted to assess the effectiveness of the proposed technique in finite sample scenarios, and a real data analysis is presented to showcase its practical application.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"201 \",\"pages\":\"Article 108041\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001257/pdfft?md5=cab1d33929cc2c1071e939e0580ca683&pid=1-s2.0-S0167947324001257-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001257\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001257","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
切片反回归(SIR)是一种高效的范式,通过用数量有限的线性组合替代高维协变量来达到降维的目的。本文的重点是将经典的 SIR 方法与高斯差分隐私机制相结合,在保护隐私的同时估计中心空间。我们说明了在经典低维和现代高维设置下的充分降维问题中,统计精度和隐私之间的权衡。此外,我们还在高斯差分隐私约束下实现了所提估计器的最小率,并说明该率对于中心空间维度有界的多指数模型也是最优的。我们对合成数据集进行了广泛的数值研究,以评估所提出的技术在有限样本情况下的有效性,并通过实际数据分析展示了该技术的实际应用。
Minimax rates of convergence for sliced inverse regression with differential privacy
Sliced inverse regression (SIR) is a highly efficient paradigm used for the purpose of dimension reduction by replacing high-dimensional covariates with a limited number of linear combinations. This paper focuses on the implementation of the classical SIR approach integrated with a Gaussian differential privacy mechanism to estimate the central space while preserving privacy. We illustrate the tradeoff between statistical accuracy and privacy in sufficient dimension reduction problems under both the classical low- dimensional and modern high-dimensional settings. Additionally, we achieve the minimax rate of the proposed estimator with Gaussian differential privacy constraint and illustrate that this rate is also optimal for multiple index models with bounded dimension of the central space. Extensive numerical studies on synthetic data sets are conducted to assess the effectiveness of the proposed technique in finite sample scenarios, and a real data analysis is presented to showcase its practical application.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]