qlty:在科学成像深度学习工作流程中处理大型张量

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Petrus H. Zwart
{"title":"qlty:在科学成像深度学习工作流程中处理大型张量","authors":"Petrus H. Zwart","doi":"10.1016/j.simpa.2024.100696","DOIUrl":null,"url":null,"abstract":"<div><p>In scientific imaging, deep learning has become a pivotal tool for image analytics. However, handling large volumetric datasets, which often exceed the memory capacity of standard GPUs, require special attention when subjected to deep learning efforts. This paper introduces <span>qlty</span>, a toolkit designed to address these challenges through tensor management techniques. <span>qlty</span> offers robust methods for subsampling, cleaning, and stitching of large-scale spatial data, enabling effective training and inference even in resource-limited environments.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"21 ","pages":"Article 100696"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000848/pdfft?md5=c43cac7596e8a2515fe30e93f9292eb3&pid=1-s2.0-S2665963824000848-main.pdf","citationCount":"0","resultStr":"{\"title\":\"qlty: Handling large tensors in scientific imaging deep-learning workflows\",\"authors\":\"Petrus H. Zwart\",\"doi\":\"10.1016/j.simpa.2024.100696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In scientific imaging, deep learning has become a pivotal tool for image analytics. However, handling large volumetric datasets, which often exceed the memory capacity of standard GPUs, require special attention when subjected to deep learning efforts. This paper introduces <span>qlty</span>, a toolkit designed to address these challenges through tensor management techniques. <span>qlty</span> offers robust methods for subsampling, cleaning, and stitching of large-scale spatial data, enabling effective training and inference even in resource-limited environments.</p></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"21 \",\"pages\":\"Article 100696\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000848/pdfft?md5=c43cac7596e8a2515fe30e93f9292eb3&pid=1-s2.0-S2665963824000848-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在科学成像领域,深度学习已成为图像分析的重要工具。然而,处理大型体积数据集通常会超出标准 GPU 的内存容量,因此在进行深度学习时需要特别注意。qlty 提供了对大规模空间数据进行子采样、清理和拼接的强大方法,即使在资源有限的环境中也能进行有效的训练和推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
qlty: Handling large tensors in scientific imaging deep-learning workflows

In scientific imaging, deep learning has become a pivotal tool for image analytics. However, handling large volumetric datasets, which often exceed the memory capacity of standard GPUs, require special attention when subjected to deep learning efforts. This paper introduces qlty, a toolkit designed to address these challenges through tensor management techniques. qlty offers robust methods for subsampling, cleaning, and stitching of large-scale spatial data, enabling effective training and inference even in resource-limited environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信