内部分最小平方:对 "必要 "降维的探索

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Yunjian Yin, Lan Liu
{"title":"内部分最小平方:对 \"必要 \"降维的探索","authors":"Yunjian Yin,&nbsp;Lan Liu","doi":"10.1016/j.jmva.2024.105356","DOIUrl":null,"url":null,"abstract":"<div><p>The partial least square (PLS) algorithm retains the combinations of predictors that maximize the covariance with the outcome. Cook et al. (2013) showed that PLS results in a predictor envelope, which is the smallest reducing subspace of predictors’ covariance that contains the coefficient. However, PLS and predictor envelope both target at a space that contains the regression coefficients and therefore they may sometimes be too conservative to reduce the dimension of the predictors. In this paper, we propose a new method that may improve the estimation efficiency of regression coefficients when both PLS and predictor envelope fail to do so. Specifically, our method results in the largest reducing subspace of predictors’ covariance that is contained in the coefficient matrix space. Interestingly, the moment based algorithm of our proposed method can be achieved by changing the max in PLS to min. We define the modified PLS as the inner PLS and the resulting space as the inner predictor envelope space. We provide the theoretical properties of our proposed methods as well as demonstrate their use in China Health and Nutrition Survey.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The inner partial least square: An exploration of the “necessary” dimension reduction\",\"authors\":\"Yunjian Yin,&nbsp;Lan Liu\",\"doi\":\"10.1016/j.jmva.2024.105356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The partial least square (PLS) algorithm retains the combinations of predictors that maximize the covariance with the outcome. Cook et al. (2013) showed that PLS results in a predictor envelope, which is the smallest reducing subspace of predictors’ covariance that contains the coefficient. However, PLS and predictor envelope both target at a space that contains the regression coefficients and therefore they may sometimes be too conservative to reduce the dimension of the predictors. In this paper, we propose a new method that may improve the estimation efficiency of regression coefficients when both PLS and predictor envelope fail to do so. Specifically, our method results in the largest reducing subspace of predictors’ covariance that is contained in the coefficient matrix space. Interestingly, the moment based algorithm of our proposed method can be achieved by changing the max in PLS to min. We define the modified PLS as the inner PLS and the resulting space as the inner predictor envelope space. We provide the theoretical properties of our proposed methods as well as demonstrate their use in China Health and Nutrition Survey.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000630\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000630","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

偏最小二乘法(PLS)算法保留了与结果协方差最大的预测因子组合。Cook 等人(2013 年)的研究表明,偏最小二乘法会产生一个预测因子包络,它是包含系数的预测因子协方差的最小还原子空间。然而,PLS 和预测因子包络都以包含回归系数的空间为目标,因此它们有时在降低预测因子维度方面可能过于保守。在本文中,我们提出了一种新方法,当 PLS 和预测包络都无法提高回归系数的估计效率时,这种方法可以提高估计效率。具体来说,我们的方法可以获得预测因子协方差的最大还原子空间,该空间包含在系数矩阵空间中。有趣的是,我们提出的基于矩的算法可以通过将 PLS 中的最大值改为最小值来实现。我们将修改后的 PLS 定义为内部 PLS,并将由此产生的空间定义为内部预测包络空间。我们提供了所提方法的理论特性,并演示了这些方法在中国健康与营养调查中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The inner partial least square: An exploration of the “necessary” dimension reduction

The partial least square (PLS) algorithm retains the combinations of predictors that maximize the covariance with the outcome. Cook et al. (2013) showed that PLS results in a predictor envelope, which is the smallest reducing subspace of predictors’ covariance that contains the coefficient. However, PLS and predictor envelope both target at a space that contains the regression coefficients and therefore they may sometimes be too conservative to reduce the dimension of the predictors. In this paper, we propose a new method that may improve the estimation efficiency of regression coefficients when both PLS and predictor envelope fail to do so. Specifically, our method results in the largest reducing subspace of predictors’ covariance that is contained in the coefficient matrix space. Interestingly, the moment based algorithm of our proposed method can be achieved by changing the max in PLS to min. We define the modified PLS as the inner PLS and the resulting space as the inner predictor envelope space. We provide the theoretical properties of our proposed methods as well as demonstrate their use in China Health and Nutrition Survey.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信