Andewi Rokhmawati , Vita Sarasi , Lailan Tawila Berampu
{"title":"利用系统动力学建模和 STIRPAT 模型分析印度尼西亚碳税对碳排放影响的情景分析","authors":"Andewi Rokhmawati , Vita Sarasi , Lailan Tawila Berampu","doi":"10.1016/j.geosus.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to develop a system dynamic (SD) forecasting model based on the STIRPAT model to forecast the effect of an IDR 30 per kg CO<sub>2</sub>e carbon tax on carbon emissions, estimate future carbon emissions under ten scenarios, without and with the carbon tax, and estimate the environmental Kuznets curve (EKC) to predict Indonesia’s carbon emission peak. Carbon emission drivers in this study are decomposed into several factors, namely energy structure, energy intensity, industrial structure, GDP per capita, population, and fixed-asset investment. This study included nuclear power utilization starting in 2038. The research gaps addressed by this study compared to previous research are (1) use of the ex-ante approach, (2) inclusion of nuclear power plants, (3) testing the EKC hypothesis, and (4) contribution to government policy. The simulation results show that under the carbon tax, carbon emissions can be reduced by improving renewable energy structures, adjusting industrial structures to green businesses, and emphasizing fixed asset investment more environmentally friendly. Moreover, the result approved the EKC hypothesis. It shows an inverse U-shaped curve between GDP per capita and CO<sub>2</sub> emissions in Indonesia. Indonesia’s fastest carbon emission peak is under scenario seven and is expected in 2040. Although an IDR 30 per kg CO<sub>2</sub>e carbon tax and nuclear power will take decades to reduce carbon emissions, the carbon tax can still be a reference and has advantages to implement. This result can be a good beginning step for Indonesia, which has yet to gain experience with a carbon tax that can be implemented immediately and is helpful to decision-makers in putting into practice sensible measures to attain Indonesia’s carbon emission peaking. This research provides actionable insights internationally on carbon tax policies, nuclear energy adoption, EKC dynamics, global policy implications, and fostering international cooperation for carbon emission reductions.</p></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"5 4","pages":"Pages 577-587"},"PeriodicalIF":8.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666683924000610/pdfft?md5=cbf60bfad0e67f681faf106e0bf8538c&pid=1-s2.0-S2666683924000610-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Scenario analysis of the Indonesia carbon tax impact on carbon emissions using system dynamics modeling and STIRPAT model\",\"authors\":\"Andewi Rokhmawati , Vita Sarasi , Lailan Tawila Berampu\",\"doi\":\"10.1016/j.geosus.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to develop a system dynamic (SD) forecasting model based on the STIRPAT model to forecast the effect of an IDR 30 per kg CO<sub>2</sub>e carbon tax on carbon emissions, estimate future carbon emissions under ten scenarios, without and with the carbon tax, and estimate the environmental Kuznets curve (EKC) to predict Indonesia’s carbon emission peak. Carbon emission drivers in this study are decomposed into several factors, namely energy structure, energy intensity, industrial structure, GDP per capita, population, and fixed-asset investment. This study included nuclear power utilization starting in 2038. The research gaps addressed by this study compared to previous research are (1) use of the ex-ante approach, (2) inclusion of nuclear power plants, (3) testing the EKC hypothesis, and (4) contribution to government policy. The simulation results show that under the carbon tax, carbon emissions can be reduced by improving renewable energy structures, adjusting industrial structures to green businesses, and emphasizing fixed asset investment more environmentally friendly. Moreover, the result approved the EKC hypothesis. It shows an inverse U-shaped curve between GDP per capita and CO<sub>2</sub> emissions in Indonesia. Indonesia’s fastest carbon emission peak is under scenario seven and is expected in 2040. Although an IDR 30 per kg CO<sub>2</sub>e carbon tax and nuclear power will take decades to reduce carbon emissions, the carbon tax can still be a reference and has advantages to implement. This result can be a good beginning step for Indonesia, which has yet to gain experience with a carbon tax that can be implemented immediately and is helpful to decision-makers in putting into practice sensible measures to attain Indonesia’s carbon emission peaking. This research provides actionable insights internationally on carbon tax policies, nuclear energy adoption, EKC dynamics, global policy implications, and fostering international cooperation for carbon emission reductions.</p></div>\",\"PeriodicalId\":52374,\"journal\":{\"name\":\"Geography and Sustainability\",\"volume\":\"5 4\",\"pages\":\"Pages 577-587\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666683924000610/pdfft?md5=cbf60bfad0e67f681faf106e0bf8538c&pid=1-s2.0-S2666683924000610-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geography and Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666683924000610\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683924000610","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Scenario analysis of the Indonesia carbon tax impact on carbon emissions using system dynamics modeling and STIRPAT model
This study aims to develop a system dynamic (SD) forecasting model based on the STIRPAT model to forecast the effect of an IDR 30 per kg CO2e carbon tax on carbon emissions, estimate future carbon emissions under ten scenarios, without and with the carbon tax, and estimate the environmental Kuznets curve (EKC) to predict Indonesia’s carbon emission peak. Carbon emission drivers in this study are decomposed into several factors, namely energy structure, energy intensity, industrial structure, GDP per capita, population, and fixed-asset investment. This study included nuclear power utilization starting in 2038. The research gaps addressed by this study compared to previous research are (1) use of the ex-ante approach, (2) inclusion of nuclear power plants, (3) testing the EKC hypothesis, and (4) contribution to government policy. The simulation results show that under the carbon tax, carbon emissions can be reduced by improving renewable energy structures, adjusting industrial structures to green businesses, and emphasizing fixed asset investment more environmentally friendly. Moreover, the result approved the EKC hypothesis. It shows an inverse U-shaped curve between GDP per capita and CO2 emissions in Indonesia. Indonesia’s fastest carbon emission peak is under scenario seven and is expected in 2040. Although an IDR 30 per kg CO2e carbon tax and nuclear power will take decades to reduce carbon emissions, the carbon tax can still be a reference and has advantages to implement. This result can be a good beginning step for Indonesia, which has yet to gain experience with a carbon tax that can be implemented immediately and is helpful to decision-makers in putting into practice sensible measures to attain Indonesia’s carbon emission peaking. This research provides actionable insights internationally on carbon tax policies, nuclear energy adoption, EKC dynamics, global policy implications, and fostering international cooperation for carbon emission reductions.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.