片状光滑连续捕食者-猎物模型中的卡纳德循环和非光滑分岔

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zirui Zhu , Xingbo Liu
{"title":"片状光滑连续捕食者-猎物模型中的卡纳德循环和非光滑分岔","authors":"Zirui Zhu ,&nbsp;Xingbo Liu","doi":"10.1016/j.matcom.2024.08.017","DOIUrl":null,"url":null,"abstract":"<div><p>This article establishes a bifurcation analysis of a singularly perturbed piecewise-smooth continuous predator–prey system with a sufficiently small parameter. The bifurcation that can generate limit cycles here is our main concern. To achieve this goal, we have developed a lemma that is used to determine the parameter region that can generate limit cycles. Further conclusions indicate that the existence of a 2-shaped critical manifold is required. Based on the Poincaré-Bendixon lemma, Fenichel’s theory and geometric singular perturbation theory, we demonstrate the possibility of generating smooth and nonsmooth bifurcations. In fact, nonsmooth bifurcations only occur in piecewise-smooth systems. More specifically, different types of nonsmooth bifurcations are also presented in this article, including nonsmooth Hopf bifurcation, Hopf-like bifurcation and super-explosion. In addition, this article discusses the existence of crossing limit cycles and explains whether the crossing limit cycle is characterized by canard cycles without head, canard cycles with head or relaxation oscillations. Furthermore, the coexistence of two relaxation oscillations, the coexistence of two canard cycles without head, and the coexistence of one relaxation oscillation and one canard cycle without head are investigated. Moreover, the one-parameter bifurcation diagram is also presented in this paper through numerical simulations.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canard cycle and nonsmooth bifurcation in a piecewise-smooth continuous predator-prey model\",\"authors\":\"Zirui Zhu ,&nbsp;Xingbo Liu\",\"doi\":\"10.1016/j.matcom.2024.08.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article establishes a bifurcation analysis of a singularly perturbed piecewise-smooth continuous predator–prey system with a sufficiently small parameter. The bifurcation that can generate limit cycles here is our main concern. To achieve this goal, we have developed a lemma that is used to determine the parameter region that can generate limit cycles. Further conclusions indicate that the existence of a 2-shaped critical manifold is required. Based on the Poincaré-Bendixon lemma, Fenichel’s theory and geometric singular perturbation theory, we demonstrate the possibility of generating smooth and nonsmooth bifurcations. In fact, nonsmooth bifurcations only occur in piecewise-smooth systems. More specifically, different types of nonsmooth bifurcations are also presented in this article, including nonsmooth Hopf bifurcation, Hopf-like bifurcation and super-explosion. In addition, this article discusses the existence of crossing limit cycles and explains whether the crossing limit cycle is characterized by canard cycles without head, canard cycles with head or relaxation oscillations. Furthermore, the coexistence of two relaxation oscillations, the coexistence of two canard cycles without head, and the coexistence of one relaxation oscillation and one canard cycle without head are investigated. Moreover, the one-parameter bifurcation diagram is also presented in this paper through numerical simulations.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003197\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003197","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文对具有足够小参数的奇异扰动片断平稳连续捕食者-猎物系统进行了分岔分析。在这里,我们主要关注的是能产生极限循环的分岔。为了实现这一目标,我们提出了一个用于确定能产生极限循环的参数区域的 Lemma。进一步的结论表明,需要存在一个 2 形临界流形。基于波恩卡莱-本迪克森(Poincaré-Bendixon)定理、费尼切尔(Fenichel)理论和几何奇异扰动理论,我们证明了产生平滑和非平滑分岔的可能性。事实上,非光滑分岔只出现在片断光滑系统中。更具体地说,本文还介绍了不同类型的非光滑分岔,包括非光滑霍普夫分岔、类霍普夫分岔和超爆发。此外,本文还讨论了越限循环的存在,并解释了越限循环的特征是无头部的鸭嘴循环、有头部的鸭嘴循环还是弛豫振荡。此外,文章还研究了两个松弛振荡共存、两个无头部鸭嘴循环共存以及一个松弛振荡和一个无头部鸭嘴循环共存的情况。此外,本文还通过数值模拟给出了单参数分岔图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canard cycle and nonsmooth bifurcation in a piecewise-smooth continuous predator-prey model

This article establishes a bifurcation analysis of a singularly perturbed piecewise-smooth continuous predator–prey system with a sufficiently small parameter. The bifurcation that can generate limit cycles here is our main concern. To achieve this goal, we have developed a lemma that is used to determine the parameter region that can generate limit cycles. Further conclusions indicate that the existence of a 2-shaped critical manifold is required. Based on the Poincaré-Bendixon lemma, Fenichel’s theory and geometric singular perturbation theory, we demonstrate the possibility of generating smooth and nonsmooth bifurcations. In fact, nonsmooth bifurcations only occur in piecewise-smooth systems. More specifically, different types of nonsmooth bifurcations are also presented in this article, including nonsmooth Hopf bifurcation, Hopf-like bifurcation and super-explosion. In addition, this article discusses the existence of crossing limit cycles and explains whether the crossing limit cycle is characterized by canard cycles without head, canard cycles with head or relaxation oscillations. Furthermore, the coexistence of two relaxation oscillations, the coexistence of two canard cycles without head, and the coexistence of one relaxation oscillation and one canard cycle without head are investigated. Moreover, the one-parameter bifurcation diagram is also presented in this paper through numerical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信