{"title":"在磷酸锆支撑的 WOx 活性位点上催化聚乳酸的回收利用","authors":"","doi":"10.1016/j.apcata.2024.119917","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical upcycling of end-of-life plastics is an economically and environmentally feasible way to tackle plastics crisis. Among them, methanol alcoholysis of polylactic acid (PLA) is a promising approach, which can produce methyl lactate (MLA) that can be further converted to lactide to achieve a sustainable development. In this work, a series of WO<sub><em>x</em></sub>/ZrP catalysts with WO<sub><em>x</em></sub> active sites in low coverage and high surface area were synthesized via anchoring WO<sub><em>x</em></sub> species on the surface of zirconium phosphate (ZrP). Characterizations indicated that the strong interaction between WO<sub><em>x</em></sub> and ZrP promoted the formation of WO<sub><em>x</em></sub> active sites in low coverage. In particular, 10 %WO<sub><em>x</em></sub>/ZrP catalyst was highly active and stable for the alcoholysis of PLA plastics under mild conditions due to the abundant WO<sub><em>x</em></sub> active sites and strong acidity. The yield of MLA over 10 %WO<sub><em>x</em></sub>/ZrP catalyst reached 94.5 % within 4 h at 160 °C, which was superior to the performance of traditional solid acids (<em>α</em>-ZrP, HZSM-5, H<em>β</em> and Amberlyst-45). In addition, 10 %WO<sub><em>x</em></sub>/ZrP was versatile for the alcoholysis of discarded PLA-based products and could be recycled at least five times. The prominent performance of 10 %WO<sub><em>x</em></sub>/ZrP catalyst and the possible reaction mechanism were discussed.</p></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic recycling of polylactic acid over zirconium phosphate supported WOx active sites\",\"authors\":\"\",\"doi\":\"10.1016/j.apcata.2024.119917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemical upcycling of end-of-life plastics is an economically and environmentally feasible way to tackle plastics crisis. Among them, methanol alcoholysis of polylactic acid (PLA) is a promising approach, which can produce methyl lactate (MLA) that can be further converted to lactide to achieve a sustainable development. In this work, a series of WO<sub><em>x</em></sub>/ZrP catalysts with WO<sub><em>x</em></sub> active sites in low coverage and high surface area were synthesized via anchoring WO<sub><em>x</em></sub> species on the surface of zirconium phosphate (ZrP). Characterizations indicated that the strong interaction between WO<sub><em>x</em></sub> and ZrP promoted the formation of WO<sub><em>x</em></sub> active sites in low coverage. In particular, 10 %WO<sub><em>x</em></sub>/ZrP catalyst was highly active and stable for the alcoholysis of PLA plastics under mild conditions due to the abundant WO<sub><em>x</em></sub> active sites and strong acidity. The yield of MLA over 10 %WO<sub><em>x</em></sub>/ZrP catalyst reached 94.5 % within 4 h at 160 °C, which was superior to the performance of traditional solid acids (<em>α</em>-ZrP, HZSM-5, H<em>β</em> and Amberlyst-45). In addition, 10 %WO<sub><em>x</em></sub>/ZrP was versatile for the alcoholysis of discarded PLA-based products and could be recycled at least five times. The prominent performance of 10 %WO<sub><em>x</em></sub>/ZrP catalyst and the possible reaction mechanism were discussed.</p></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X24003624\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24003624","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Catalytic recycling of polylactic acid over zirconium phosphate supported WOx active sites
Chemical upcycling of end-of-life plastics is an economically and environmentally feasible way to tackle plastics crisis. Among them, methanol alcoholysis of polylactic acid (PLA) is a promising approach, which can produce methyl lactate (MLA) that can be further converted to lactide to achieve a sustainable development. In this work, a series of WOx/ZrP catalysts with WOx active sites in low coverage and high surface area were synthesized via anchoring WOx species on the surface of zirconium phosphate (ZrP). Characterizations indicated that the strong interaction between WOx and ZrP promoted the formation of WOx active sites in low coverage. In particular, 10 %WOx/ZrP catalyst was highly active and stable for the alcoholysis of PLA plastics under mild conditions due to the abundant WOx active sites and strong acidity. The yield of MLA over 10 %WOx/ZrP catalyst reached 94.5 % within 4 h at 160 °C, which was superior to the performance of traditional solid acids (α-ZrP, HZSM-5, Hβ and Amberlyst-45). In addition, 10 %WOx/ZrP was versatile for the alcoholysis of discarded PLA-based products and could be recycled at least five times. The prominent performance of 10 %WOx/ZrP catalyst and the possible reaction mechanism were discussed.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.