用于表示均质化各向异性微结构机械响应的等变图卷积神经网络

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"用于表示均质化各向异性微结构机械响应的等变图卷积神经网络","authors":"","doi":"10.1016/j.cma.2024.117334","DOIUrl":null,"url":null,"abstract":"<div><p>Composite materials with different microstructural material symmetries are common in engineering applications where grain structure, alloying and particle/fiber packing are optimized via controlled manufacturing. In fact these microstructural tunings can be done throughout a part to achieve functional gradation and optimization at a structural level. To predict the performance of particular microstructural configuration and thereby overall performance, constitutive models of materials with microstructure are needed.</p><p>In this work we provide neural network architectures that provide effective homogenization models of materials with anisotropic components. These models satisfy equivariance and material symmetry principles inherently through a combination of equivariant and tensor basis operations. We demonstrate them on datasets of stochastic volume elements with different textures and phases where the material undergoes elastic and plastic deformation, and show that the these network architectures provide significant performance improvements.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant graph convolutional neural networks for the representation of homogenized anisotropic microstructural mechanical response\",\"authors\":\"\",\"doi\":\"10.1016/j.cma.2024.117334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Composite materials with different microstructural material symmetries are common in engineering applications where grain structure, alloying and particle/fiber packing are optimized via controlled manufacturing. In fact these microstructural tunings can be done throughout a part to achieve functional gradation and optimization at a structural level. To predict the performance of particular microstructural configuration and thereby overall performance, constitutive models of materials with microstructure are needed.</p><p>In this work we provide neural network architectures that provide effective homogenization models of materials with anisotropic components. These models satisfy equivariance and material symmetry principles inherently through a combination of equivariant and tensor basis operations. We demonstrate them on datasets of stochastic volume elements with different textures and phases where the material undergoes elastic and plastic deformation, and show that the these network architectures provide significant performance improvements.</p></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524005899\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005899","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在工程应用中,具有不同微结构材料对称性的复合材料很常见,通过控制制造可以优化晶粒结构、合金和颗粒/纤维堆积。事实上,这些微观结构调整可以在整个部件中进行,以实现功能分级和结构优化。为了预测特定微结构配置的性能,进而预测整体性能,需要建立具有微结构的材料构成模型。在这项工作中,我们提供了神经网络架构,为具有各向异性成分的材料建立有效的均质化模型。这些模型通过等差数列和张量基运算的组合,从本质上满足了等差数列和材料对称性原则。我们在具有不同质地和相位的随机体积元素数据集上演示了这些模型,并表明这些网络架构能显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Equivariant graph convolutional neural networks for the representation of homogenized anisotropic microstructural mechanical response

Equivariant graph convolutional neural networks for the representation of homogenized anisotropic microstructural mechanical response

Composite materials with different microstructural material symmetries are common in engineering applications where grain structure, alloying and particle/fiber packing are optimized via controlled manufacturing. In fact these microstructural tunings can be done throughout a part to achieve functional gradation and optimization at a structural level. To predict the performance of particular microstructural configuration and thereby overall performance, constitutive models of materials with microstructure are needed.

In this work we provide neural network architectures that provide effective homogenization models of materials with anisotropic components. These models satisfy equivariance and material symmetry principles inherently through a combination of equivariant and tensor basis operations. We demonstrate them on datasets of stochastic volume elements with different textures and phases where the material undergoes elastic and plastic deformation, and show that the these network architectures provide significant performance improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信