Xiao-Rong Huang, Lin Ye, Ning An, Chun-Yu Wu, Hong-Luan Wu, Hui-Yuan Li, Yan-Heng Huang, Qiao-Ru Ye, Ming-Dong Liu, La-Wei Yang, Jian-Xing Liu, Ji-Xin Tang, Qing-Jun Pan, Peng Wang, Lin Sun, Yin Xia, Hui-Yao Lan, Chen Yang, Hua-Feng Liu
{"title":"巨噬细胞自噬通过降解 TARM1 抑制肾脏炎症,从而防止急性肾损伤。","authors":"Xiao-Rong Huang, Lin Ye, Ning An, Chun-Yu Wu, Hong-Luan Wu, Hui-Yuan Li, Yan-Heng Huang, Qiao-Ru Ye, Ming-Dong Liu, La-Wei Yang, Jian-Xing Liu, Ji-Xin Tang, Qing-Jun Pan, Peng Wang, Lin Sun, Yin Xia, Hui-Yao Lan, Chen Yang, Hua-Feng Liu","doi":"10.1080/15548627.2024.2393926","DOIUrl":null,"url":null,"abstract":"<p><p>Macroautophagy/autophagy activation in renal tubular epithelial cells protects against acute kidney injury (AKI). However, the role of immune cell autophagy, such as that involving macrophages, in AKI remains unclear. In this study, we discovered that macrophage autophagy was an adaptive response during AKI as mice with macrophage-specific autophagy deficiency (<i>atg5</i><sup>-/-</sup>) exhibited higher serum creatinine, more severe renal tubule injury, increased infiltration of ADGRE1/F4/80<sup>+</sup> macrophages, and elevated expression of inflammatory factors compared to WT mice during AKI induced by either LPS or unilateral ischemia-reperfusion. This was further supported by adoptive transfer of <i>atg5</i><sup>-/-</sup> macrophages, but not WT macrophages, to cause more severe AKI in clodronate liposomes-induced macrophage depletion mice. Similar results were also obtained in vitro that bone marrow-derived macrophages (BMDMs) lacking <i>Atg5</i> largely increased pro-inflammatory cytokine expression in response to LPS and IFNG. Mechanistically, we uncovered that <i>atg5</i> deletion significantly upregulated the protein expression of TARM1 (T cell-interacting, activating receptor on myeloid cells 1), whereas inhibition of TARM1 suppressed LPS- and IFNG-induced inflammatory responses in <i>atg5</i><sup>-/-</sup> RAW 264.7 macrophages. The E3 ubiquitin ligases MARCHF1 and MARCHF8 ubiquitinated TARM1 and promoted its degradation in an autophagy-dependent manner, whereas silencing or mutation of the functional domains of MARCHF1 and MARCHF8 abolished TARM1 degradation. Furthermore, we found that ubiquitinated TARM1 was internalized from plasma membrane into endosomes, and then recruited by the ubiquitin-binding autophagy receptors TAX1BP1 and SQSTM1 into the autophagy-lysosome pathway for degradation. In conclusion, macrophage autophagy protects against AKI by inhibiting renal inflammation through the MARCHF1- and MARCHF8-mediated degradation of TARM1.<b>Abbreviations:</b> AKI, acute kidney injury; ATG, autophagy related; Baf, bafilomycin A<sub>1</sub>; BMDMs, bone marrow-derived macrophages; CCL2/MCP-1, C-C motif chemokine ligand 2; CHX, cycloheximide; CQ, chloroquine; IFNG, interferon gamma; IL, interleukin; IR, ischemia-reperfusion; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; LPS, lipopolysaccharide; MARCHF, membrane associated ring-CH-type finger; NC, negative control; NFKB, nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3, NLR family, pyrin domain containing 3; NOS2, nitric oxide synthase 2, inducible; Rap, rapamycin; Wort, wortmannin; RT-qPCR, real-time quantitative polymerase chain reaction; Scr, serum creatinine; SEM, standard error of mean; siRNA, small interfering RNA; SYK, spleen tyrosine kinase; TARM1, T cell-interacting, activating receptor on myeloid cells 1; TAX1BP1, Tax1 (human T cell leukemia virus type I) binding protein 1; TECs, tubule epithelial cells; TNF, tumor necrosis factor; WT, wild type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrophage autophagy protects against acute kidney injury by inhibiting renal inflammation through the degradation of TARM1.\",\"authors\":\"Xiao-Rong Huang, Lin Ye, Ning An, Chun-Yu Wu, Hong-Luan Wu, Hui-Yuan Li, Yan-Heng Huang, Qiao-Ru Ye, Ming-Dong Liu, La-Wei Yang, Jian-Xing Liu, Ji-Xin Tang, Qing-Jun Pan, Peng Wang, Lin Sun, Yin Xia, Hui-Yao Lan, Chen Yang, Hua-Feng Liu\",\"doi\":\"10.1080/15548627.2024.2393926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macroautophagy/autophagy activation in renal tubular epithelial cells protects against acute kidney injury (AKI). However, the role of immune cell autophagy, such as that involving macrophages, in AKI remains unclear. In this study, we discovered that macrophage autophagy was an adaptive response during AKI as mice with macrophage-specific autophagy deficiency (<i>atg5</i><sup>-/-</sup>) exhibited higher serum creatinine, more severe renal tubule injury, increased infiltration of ADGRE1/F4/80<sup>+</sup> macrophages, and elevated expression of inflammatory factors compared to WT mice during AKI induced by either LPS or unilateral ischemia-reperfusion. This was further supported by adoptive transfer of <i>atg5</i><sup>-/-</sup> macrophages, but not WT macrophages, to cause more severe AKI in clodronate liposomes-induced macrophage depletion mice. Similar results were also obtained in vitro that bone marrow-derived macrophages (BMDMs) lacking <i>Atg5</i> largely increased pro-inflammatory cytokine expression in response to LPS and IFNG. Mechanistically, we uncovered that <i>atg5</i> deletion significantly upregulated the protein expression of TARM1 (T cell-interacting, activating receptor on myeloid cells 1), whereas inhibition of TARM1 suppressed LPS- and IFNG-induced inflammatory responses in <i>atg5</i><sup>-/-</sup> RAW 264.7 macrophages. The E3 ubiquitin ligases MARCHF1 and MARCHF8 ubiquitinated TARM1 and promoted its degradation in an autophagy-dependent manner, whereas silencing or mutation of the functional domains of MARCHF1 and MARCHF8 abolished TARM1 degradation. Furthermore, we found that ubiquitinated TARM1 was internalized from plasma membrane into endosomes, and then recruited by the ubiquitin-binding autophagy receptors TAX1BP1 and SQSTM1 into the autophagy-lysosome pathway for degradation. In conclusion, macrophage autophagy protects against AKI by inhibiting renal inflammation through the MARCHF1- and MARCHF8-mediated degradation of TARM1.<b>Abbreviations:</b> AKI, acute kidney injury; ATG, autophagy related; Baf, bafilomycin A<sub>1</sub>; BMDMs, bone marrow-derived macrophages; CCL2/MCP-1, C-C motif chemokine ligand 2; CHX, cycloheximide; CQ, chloroquine; IFNG, interferon gamma; IL, interleukin; IR, ischemia-reperfusion; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; LPS, lipopolysaccharide; MARCHF, membrane associated ring-CH-type finger; NC, negative control; NFKB, nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3, NLR family, pyrin domain containing 3; NOS2, nitric oxide synthase 2, inducible; Rap, rapamycin; Wort, wortmannin; RT-qPCR, real-time quantitative polymerase chain reaction; Scr, serum creatinine; SEM, standard error of mean; siRNA, small interfering RNA; SYK, spleen tyrosine kinase; TARM1, T cell-interacting, activating receptor on myeloid cells 1; TAX1BP1, Tax1 (human T cell leukemia virus type I) binding protein 1; TECs, tubule epithelial cells; TNF, tumor necrosis factor; WT, wild type.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2024.2393926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2393926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
肾小管上皮细胞中的大自噬/自噬激活可防止急性肾损伤(AKI)。然而,免疫细胞自噬(如涉及巨噬细胞的自噬)在 AKI 中的作用仍不清楚。在这项研究中,我们发现巨噬细胞自噬是 AKI 期间的一种适应性反应,因为在 LPS 或单侧缺血再灌注诱导的 AKI 期间,与 WT 小鼠相比,巨噬细胞特异性自噬缺陷(atg5-/-)小鼠表现出更高的血清肌酐、更严重的肾小管损伤、ADGRE1/F4/80+ 巨噬细胞浸润增加以及炎症因子表达升高。在氯膦酸脂质体诱导的巨噬细胞耗竭小鼠中,采用转移 atg5-/- 巨噬细胞(而非 WT 巨噬细胞)引起更严重的 AKI 进一步证实了这一点。在体外也得到了类似的结果,即缺乏Atg5的骨髓源巨噬细胞(BMDMs)对LPS和IFNG的反应在很大程度上增加了促炎细胞因子的表达。从机理上讲,我们发现缺失 Atg5 会显著上调 TARM1(T 细胞相互作用、激活髓系细胞上的受体 1)的蛋白表达,而抑制 TARM1 则会抑制 LPS 和 IFNG 诱导的 atg5-/- RAW 264.7 巨噬细胞的炎症反应。E3泛素连接酶MARCHF1和MARCHF8泛素化TARM1并以自噬依赖的方式促进其降解,而沉默或突变MARCHF1和MARCHF8的功能域则会取消TARM1的降解。此外,我们还发现泛素化的 TARM1 会从质膜内化到内体,然后被泛素结合的自噬受体 TAX1BP1 和 SQSTM1 招募到自噬-溶酶体途径中降解。总之,巨噬细胞自噬可通过MARCHF1和MARCHF8介导的TARM1降解抑制肾脏炎症,从而预防AKI。
Macrophage autophagy protects against acute kidney injury by inhibiting renal inflammation through the degradation of TARM1.
Macroautophagy/autophagy activation in renal tubular epithelial cells protects against acute kidney injury (AKI). However, the role of immune cell autophagy, such as that involving macrophages, in AKI remains unclear. In this study, we discovered that macrophage autophagy was an adaptive response during AKI as mice with macrophage-specific autophagy deficiency (atg5-/-) exhibited higher serum creatinine, more severe renal tubule injury, increased infiltration of ADGRE1/F4/80+ macrophages, and elevated expression of inflammatory factors compared to WT mice during AKI induced by either LPS or unilateral ischemia-reperfusion. This was further supported by adoptive transfer of atg5-/- macrophages, but not WT macrophages, to cause more severe AKI in clodronate liposomes-induced macrophage depletion mice. Similar results were also obtained in vitro that bone marrow-derived macrophages (BMDMs) lacking Atg5 largely increased pro-inflammatory cytokine expression in response to LPS and IFNG. Mechanistically, we uncovered that atg5 deletion significantly upregulated the protein expression of TARM1 (T cell-interacting, activating receptor on myeloid cells 1), whereas inhibition of TARM1 suppressed LPS- and IFNG-induced inflammatory responses in atg5-/- RAW 264.7 macrophages. The E3 ubiquitin ligases MARCHF1 and MARCHF8 ubiquitinated TARM1 and promoted its degradation in an autophagy-dependent manner, whereas silencing or mutation of the functional domains of MARCHF1 and MARCHF8 abolished TARM1 degradation. Furthermore, we found that ubiquitinated TARM1 was internalized from plasma membrane into endosomes, and then recruited by the ubiquitin-binding autophagy receptors TAX1BP1 and SQSTM1 into the autophagy-lysosome pathway for degradation. In conclusion, macrophage autophagy protects against AKI by inhibiting renal inflammation through the MARCHF1- and MARCHF8-mediated degradation of TARM1.Abbreviations: AKI, acute kidney injury; ATG, autophagy related; Baf, bafilomycin A1; BMDMs, bone marrow-derived macrophages; CCL2/MCP-1, C-C motif chemokine ligand 2; CHX, cycloheximide; CQ, chloroquine; IFNG, interferon gamma; IL, interleukin; IR, ischemia-reperfusion; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; LPS, lipopolysaccharide; MARCHF, membrane associated ring-CH-type finger; NC, negative control; NFKB, nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3, NLR family, pyrin domain containing 3; NOS2, nitric oxide synthase 2, inducible; Rap, rapamycin; Wort, wortmannin; RT-qPCR, real-time quantitative polymerase chain reaction; Scr, serum creatinine; SEM, standard error of mean; siRNA, small interfering RNA; SYK, spleen tyrosine kinase; TARM1, T cell-interacting, activating receptor on myeloid cells 1; TAX1BP1, Tax1 (human T cell leukemia virus type I) binding protein 1; TECs, tubule epithelial cells; TNF, tumor necrosis factor; WT, wild type.