基于行为标记的老年人主观认知功能衰退和轻度认知障碍的功能状态预测模型:研究方案。

IF 2.9 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
DIGITAL HEALTH Pub Date : 2024-08-25 eCollection Date: 2024-01-01 DOI:10.1177/20552076241269555
Bada Kang, Jinkyoung Ma, Innhee Jeong, Seolah Yoon, Jennifer Ivy Kim, Seok-Jae Heo, Sarah Soyeon Oh
{"title":"基于行为标记的老年人主观认知功能衰退和轻度认知障碍的功能状态预测模型:研究方案。","authors":"Bada Kang, Jinkyoung Ma, Innhee Jeong, Seolah Yoon, Jennifer Ivy Kim, Seok-Jae Heo, Sarah Soyeon Oh","doi":"10.1177/20552076241269555","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study describes a research protocol for a behavioral marker-based predictive model that examines the functional status of older adults with subjective cognitive decline and mild cognitive impairment.</p><p><strong>Methods: </strong>A total of 130 older adults aged ≥65 years with subjective cognitive decline or mild cognitive impairment will be recruited from the Dementia Relief Centers or the Community Service Centers. Data on behavioral and psychosocial markers (e.g. physical activity, mobility, sleep/wake patterns, social interaction, and mild behavioral impairment) will be collected using passive wearable actigraphy, in-person questionnaires, and smartphone-based ecological momentary assessments. Two follow-up assessments will be performed at 12 and 24 months after baseline. Mixed-effect machine learning models: MErf, MEgbm, MEmod, and MEctree, and standard machine learning models without random effects [random forest, gradient boosting machine] will be employed in our analyses to predict functional status over time.</p><p><strong>Results: </strong>The results of this study will be fundamental for developing tailored digital interventions that apply deep learning techniques to behavioral data to predict, identify, and aid in the management of functional decline in older adults with subjective cognitive decline and mild cognitive impairment. These older adults are considered the optimal target population for preventive interventions and will benefit from such tailored strategies.</p><p><strong>Conclusions: </strong>Our study will contribute to the development of self-care interventions that utilize behavioral data and machine learning techniques to provide automated analyses of the functional decline of older adults who are at risk for dementia.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348489/pdf/","citationCount":"0","resultStr":"{\"title\":\"Behavioral marker-based predictive modeling of functional status for older adults with subjective cognitive decline and mild cognitive impairment: Study protocol.\",\"authors\":\"Bada Kang, Jinkyoung Ma, Innhee Jeong, Seolah Yoon, Jennifer Ivy Kim, Seok-Jae Heo, Sarah Soyeon Oh\",\"doi\":\"10.1177/20552076241269555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study describes a research protocol for a behavioral marker-based predictive model that examines the functional status of older adults with subjective cognitive decline and mild cognitive impairment.</p><p><strong>Methods: </strong>A total of 130 older adults aged ≥65 years with subjective cognitive decline or mild cognitive impairment will be recruited from the Dementia Relief Centers or the Community Service Centers. Data on behavioral and psychosocial markers (e.g. physical activity, mobility, sleep/wake patterns, social interaction, and mild behavioral impairment) will be collected using passive wearable actigraphy, in-person questionnaires, and smartphone-based ecological momentary assessments. Two follow-up assessments will be performed at 12 and 24 months after baseline. Mixed-effect machine learning models: MErf, MEgbm, MEmod, and MEctree, and standard machine learning models without random effects [random forest, gradient boosting machine] will be employed in our analyses to predict functional status over time.</p><p><strong>Results: </strong>The results of this study will be fundamental for developing tailored digital interventions that apply deep learning techniques to behavioral data to predict, identify, and aid in the management of functional decline in older adults with subjective cognitive decline and mild cognitive impairment. These older adults are considered the optimal target population for preventive interventions and will benefit from such tailored strategies.</p><p><strong>Conclusions: </strong>Our study will contribute to the development of self-care interventions that utilize behavioral data and machine learning techniques to provide automated analyses of the functional decline of older adults who are at risk for dementia.</p>\",\"PeriodicalId\":51333,\"journal\":{\"name\":\"DIGITAL HEALTH\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348489/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DIGITAL HEALTH\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/20552076241269555\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076241269555","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究描述了一个基于行为标记的预测模型的研究方案,该模型用于检测患有主观认知功能衰退和轻度认知功能障碍的老年人的功能状态:方法:将从痴呆症救助中心或社区服务中心招募 130 名年龄≥65 岁、患有主观认知功能衰退或轻度认知功能障碍的老年人。我们将使用被动式可穿戴行动记录仪、面对面问卷调查和基于智能手机的生态瞬间评估来收集行为和心理社会指标(如体力活动、行动能力、睡眠/觉醒模式、社交互动和轻度行为障碍)的数据。将在基线后 12 个月和 24 个月进行两次随访评估。混合效应机器学习模型:在分析中,我们将采用MErf、MEgbm、MEmod和MEctree以及无随机效应的标准机器学习模型(随机森林、梯度提升机)来预测一段时间内的功能状态:本研究的结果将为开发量身定制的数字干预措施奠定基础,这些干预措施将深度学习技术应用于行为数据,以预测、识别和帮助管理患有主观认知功能衰退和轻度认知障碍的老年人的功能衰退。这些老年人被认为是预防性干预措施的最佳目标人群,他们将从这种量身定制的策略中受益:我们的研究将有助于开发自我保健干预措施,利用行为数据和机器学习技术对有痴呆风险的老年人的功能衰退情况进行自动分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavioral marker-based predictive modeling of functional status for older adults with subjective cognitive decline and mild cognitive impairment: Study protocol.

Objective: This study describes a research protocol for a behavioral marker-based predictive model that examines the functional status of older adults with subjective cognitive decline and mild cognitive impairment.

Methods: A total of 130 older adults aged ≥65 years with subjective cognitive decline or mild cognitive impairment will be recruited from the Dementia Relief Centers or the Community Service Centers. Data on behavioral and psychosocial markers (e.g. physical activity, mobility, sleep/wake patterns, social interaction, and mild behavioral impairment) will be collected using passive wearable actigraphy, in-person questionnaires, and smartphone-based ecological momentary assessments. Two follow-up assessments will be performed at 12 and 24 months after baseline. Mixed-effect machine learning models: MErf, MEgbm, MEmod, and MEctree, and standard machine learning models without random effects [random forest, gradient boosting machine] will be employed in our analyses to predict functional status over time.

Results: The results of this study will be fundamental for developing tailored digital interventions that apply deep learning techniques to behavioral data to predict, identify, and aid in the management of functional decline in older adults with subjective cognitive decline and mild cognitive impairment. These older adults are considered the optimal target population for preventive interventions and will benefit from such tailored strategies.

Conclusions: Our study will contribute to the development of self-care interventions that utilize behavioral data and machine learning techniques to provide automated analyses of the functional decline of older adults who are at risk for dementia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信