同步立体匹配和可信度估计网络。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Tobias Schmähling, Tobias Müller, Jörg Eberhardt, Stefan Elser
{"title":"同步立体匹配和可信度估计网络。","authors":"Tobias Schmähling, Tobias Müller, Jörg Eberhardt, Stefan Elser","doi":"10.3390/jimaging10080198","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a multi-task model that predicts disparities and confidence levels in deep stereo matching simultaneously. We do this by combining its successful model for each separate task and obtaining a multi-task model that can be trained with a proposed loss function. We show the advantages of this model compared to training and predicting disparity and confidence sequentially. This method enables an improvement of 15% to 30% in the area under the curve (AUC) metric when trained in parallel rather than sequentially. In addition, the effect of weighting the components in the loss function on the stereo and confidence performance is investigated. By improving the confidence estimate, the practicality of stereo estimators for creating distance images is increased.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355914/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Stereo Matching and Confidence Estimation Network.\",\"authors\":\"Tobias Schmähling, Tobias Müller, Jörg Eberhardt, Stefan Elser\",\"doi\":\"10.3390/jimaging10080198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we present a multi-task model that predicts disparities and confidence levels in deep stereo matching simultaneously. We do this by combining its successful model for each separate task and obtaining a multi-task model that can be trained with a proposed loss function. We show the advantages of this model compared to training and predicting disparity and confidence sequentially. This method enables an improvement of 15% to 30% in the area under the curve (AUC) metric when trained in parallel rather than sequentially. In addition, the effect of weighting the components in the loss function on the stereo and confidence performance is investigated. By improving the confidence estimate, the practicality of stereo estimators for creating distance images is increased.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"10 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355914/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging10080198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10080198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种多任务模型,可同时预测深度立体匹配中的差距和置信度。为此,我们将其成功的模型与每个独立任务相结合,得到了一个可使用建议的损失函数进行训练的多任务模型。我们展示了该模型与按顺序训练和预测差异和置信度相比的优势。与顺序训练相比,这种方法可将曲线下面积 (AUC) 指标提高 15% 至 30%。此外,还研究了加权损失函数中的成分对立体和置信度性能的影响。通过改进置信度估计,提高了用于创建距离图像的立体估计器的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Stereo Matching and Confidence Estimation Network.

In this paper, we present a multi-task model that predicts disparities and confidence levels in deep stereo matching simultaneously. We do this by combining its successful model for each separate task and obtaining a multi-task model that can be trained with a proposed loss function. We show the advantages of this model compared to training and predicting disparity and confidence sequentially. This method enables an improvement of 15% to 30% in the area under the curve (AUC) metric when trained in parallel rather than sequentially. In addition, the effect of weighting the components in the loss function on the stereo and confidence performance is investigated. By improving the confidence estimate, the practicality of stereo estimators for creating distance images is increased.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信