S K Baidya, S Banerjee, B Ghosh, T Jha, N Adhikari
{"title":"确定包含烷基/芳磺酰基吡咯烷支架的潜在 MMP-2 抑制剂的主要结构属性:一种通过分子动力学模拟分析验证的基于配体的分子建模方法。","authors":"S K Baidya, S Banerjee, B Ghosh, T Jha, N Adhikari","doi":"10.1080/1062936X.2024.2389822","DOIUrl":null,"url":null,"abstract":"<p><p>MMP-2 overexpression is strongly related to several diseases including cancer. However, none of the MMP-2 inhibitors have been marketed as drug candidates due to various adverse effects. Here, a set of sulphonyl pyrrolidines was subjected to validation of molecular modelling followed by binding mode analysis to explore the crucial structural features required for the discovery of promising MMP-2 inhibitors. This study revealed the importance of hydroxamate as a potential zinc-binding group compared to the esters. Importantly, hydrophobic and sterical substituents were found favourable at the terminal aryl moiety attached to the sulphonyl group. The binding interaction study revealed that the S1' pocket of MMP-2 similar to '<i>a basketball passing through a hoop</i>' allows the aryl moiety for proper fitting and interaction at the active site to execute potential MMP-2 inhibition. Again, the sulphonyl pyrrolidine moiety can be a good fragment necessary for MMP-2 inhibition. Moreover, some novel MMP-2 inhibitors were also reported. They showed the significance of the 3<sup>rd</sup> position substitution of the pyrrolidine ring to produce interaction inside S2' pocket. The current study can assist in the design and development of potential MMP-2 inhibitors as effective drug candidates for the management of several diseases including cancers in the future.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"665-692"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pinpointing prime structural attributes of potential MMP-2 inhibitors comprising alkyl/arylsulfonyl pyrrolidine scaffold: a ligand-based molecular modelling approach validated by molecular dynamics simulation analysis.\",\"authors\":\"S K Baidya, S Banerjee, B Ghosh, T Jha, N Adhikari\",\"doi\":\"10.1080/1062936X.2024.2389822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MMP-2 overexpression is strongly related to several diseases including cancer. However, none of the MMP-2 inhibitors have been marketed as drug candidates due to various adverse effects. Here, a set of sulphonyl pyrrolidines was subjected to validation of molecular modelling followed by binding mode analysis to explore the crucial structural features required for the discovery of promising MMP-2 inhibitors. This study revealed the importance of hydroxamate as a potential zinc-binding group compared to the esters. Importantly, hydrophobic and sterical substituents were found favourable at the terminal aryl moiety attached to the sulphonyl group. The binding interaction study revealed that the S1' pocket of MMP-2 similar to '<i>a basketball passing through a hoop</i>' allows the aryl moiety for proper fitting and interaction at the active site to execute potential MMP-2 inhibition. Again, the sulphonyl pyrrolidine moiety can be a good fragment necessary for MMP-2 inhibition. Moreover, some novel MMP-2 inhibitors were also reported. They showed the significance of the 3<sup>rd</sup> position substitution of the pyrrolidine ring to produce interaction inside S2' pocket. The current study can assist in the design and development of potential MMP-2 inhibitors as effective drug candidates for the management of several diseases including cancers in the future.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\" \",\"pages\":\"665-692\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2024.2389822\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2389822","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pinpointing prime structural attributes of potential MMP-2 inhibitors comprising alkyl/arylsulfonyl pyrrolidine scaffold: a ligand-based molecular modelling approach validated by molecular dynamics simulation analysis.
MMP-2 overexpression is strongly related to several diseases including cancer. However, none of the MMP-2 inhibitors have been marketed as drug candidates due to various adverse effects. Here, a set of sulphonyl pyrrolidines was subjected to validation of molecular modelling followed by binding mode analysis to explore the crucial structural features required for the discovery of promising MMP-2 inhibitors. This study revealed the importance of hydroxamate as a potential zinc-binding group compared to the esters. Importantly, hydrophobic and sterical substituents were found favourable at the terminal aryl moiety attached to the sulphonyl group. The binding interaction study revealed that the S1' pocket of MMP-2 similar to 'a basketball passing through a hoop' allows the aryl moiety for proper fitting and interaction at the active site to execute potential MMP-2 inhibition. Again, the sulphonyl pyrrolidine moiety can be a good fragment necessary for MMP-2 inhibition. Moreover, some novel MMP-2 inhibitors were also reported. They showed the significance of the 3rd position substitution of the pyrrolidine ring to produce interaction inside S2' pocket. The current study can assist in the design and development of potential MMP-2 inhibitors as effective drug candidates for the management of several diseases including cancers in the future.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.