{"title":"柯萨奇病毒 B3 组调控 ASS1 介导的代谢重编程,并促进病毒性心肌炎中巨噬细胞炎症极化。","authors":"Qiong Liu, Yinpan Shang, Ziwei Tao, Xuan Li, Lu Shen, Hanchi Zhang, Zhili Liu, Zhirong Rao, Xiaomin Yu, Yanli Cao, Lingbing Zeng, Xiaotian Huang","doi":"10.1128/jvi.00805-24","DOIUrl":null,"url":null,"abstract":"<p><p>Coxsackievirus group B3 (CVB3) belongs to the genus <i>Enteroviruses</i> of the family <i>Picornaviridae</i> and is the main pathogen underlying viral myocarditis (VMC). No specific therapeutic is available for this condition. Argininosuccinate synthase 1 (ASS1) is a key enzyme in the urea cycle that converts citrulline and aspartic acid to argininosuccinate. Here, we found that CVB3 and its capsid protein VP2 inhibit the autophagic degradation of ASS1 and that CVB3 consumes citrulline to upregulate ASS1, triggers urea cycle metabolic reprogramming, and then activates macrophages to develop pro-inflammatory polarization, thereby promoting the occurrence and development of VMC. Conversely, citrulline supplementation to prevent depletion can downregulate ASS1, rescue macrophage polarization, and alleviate the pathogenicity of VMC. These findings provide a new perspective on the occurrence and development of VMC, revealing ASS1 as a potential new target for treating this disease.</p><p><strong>Importance: </strong>Viral myocarditis (VMC) is a common and potentially life-threatening myocardial inflammatory disease, most commonly caused by CVB3 infection. So far, the pathogenesis of VMC caused by CVB3 is mainly focused on two aspects: one is the direct myocardial injury caused by a large number of viral replication in the early stage of infection, and the other is the local immune cell infiltration and inflammatory damage of the myocardium in the adaptive immune response stage. There are few studies on the early innate immunity of CVB3 infection in myocardial tissue, but the appearance of macrophages in the early stage of CVB3 infection suggests that they can play a regulatory role as early innate immune response cells in myocardial tissue. Here, we discovered a possible new mechanism of VMC caused by CVB3, revealed new drug targets for anti-CVB3, and discovered the therapeutic potential of citrulline for VMC.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406948/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coxsackievirus group B3 regulates ASS1-mediated metabolic reprogramming and promotes macrophage inflammatory polarization in viral myocarditis.\",\"authors\":\"Qiong Liu, Yinpan Shang, Ziwei Tao, Xuan Li, Lu Shen, Hanchi Zhang, Zhili Liu, Zhirong Rao, Xiaomin Yu, Yanli Cao, Lingbing Zeng, Xiaotian Huang\",\"doi\":\"10.1128/jvi.00805-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coxsackievirus group B3 (CVB3) belongs to the genus <i>Enteroviruses</i> of the family <i>Picornaviridae</i> and is the main pathogen underlying viral myocarditis (VMC). No specific therapeutic is available for this condition. Argininosuccinate synthase 1 (ASS1) is a key enzyme in the urea cycle that converts citrulline and aspartic acid to argininosuccinate. Here, we found that CVB3 and its capsid protein VP2 inhibit the autophagic degradation of ASS1 and that CVB3 consumes citrulline to upregulate ASS1, triggers urea cycle metabolic reprogramming, and then activates macrophages to develop pro-inflammatory polarization, thereby promoting the occurrence and development of VMC. Conversely, citrulline supplementation to prevent depletion can downregulate ASS1, rescue macrophage polarization, and alleviate the pathogenicity of VMC. These findings provide a new perspective on the occurrence and development of VMC, revealing ASS1 as a potential new target for treating this disease.</p><p><strong>Importance: </strong>Viral myocarditis (VMC) is a common and potentially life-threatening myocardial inflammatory disease, most commonly caused by CVB3 infection. So far, the pathogenesis of VMC caused by CVB3 is mainly focused on two aspects: one is the direct myocardial injury caused by a large number of viral replication in the early stage of infection, and the other is the local immune cell infiltration and inflammatory damage of the myocardium in the adaptive immune response stage. There are few studies on the early innate immunity of CVB3 infection in myocardial tissue, but the appearance of macrophages in the early stage of CVB3 infection suggests that they can play a regulatory role as early innate immune response cells in myocardial tissue. Here, we discovered a possible new mechanism of VMC caused by CVB3, revealed new drug targets for anti-CVB3, and discovered the therapeutic potential of citrulline for VMC.</p>\",\"PeriodicalId\":17583,\"journal\":{\"name\":\"Journal of Virology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406948/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jvi.00805-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.00805-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Coxsackievirus group B3 regulates ASS1-mediated metabolic reprogramming and promotes macrophage inflammatory polarization in viral myocarditis.
Coxsackievirus group B3 (CVB3) belongs to the genus Enteroviruses of the family Picornaviridae and is the main pathogen underlying viral myocarditis (VMC). No specific therapeutic is available for this condition. Argininosuccinate synthase 1 (ASS1) is a key enzyme in the urea cycle that converts citrulline and aspartic acid to argininosuccinate. Here, we found that CVB3 and its capsid protein VP2 inhibit the autophagic degradation of ASS1 and that CVB3 consumes citrulline to upregulate ASS1, triggers urea cycle metabolic reprogramming, and then activates macrophages to develop pro-inflammatory polarization, thereby promoting the occurrence and development of VMC. Conversely, citrulline supplementation to prevent depletion can downregulate ASS1, rescue macrophage polarization, and alleviate the pathogenicity of VMC. These findings provide a new perspective on the occurrence and development of VMC, revealing ASS1 as a potential new target for treating this disease.
Importance: Viral myocarditis (VMC) is a common and potentially life-threatening myocardial inflammatory disease, most commonly caused by CVB3 infection. So far, the pathogenesis of VMC caused by CVB3 is mainly focused on two aspects: one is the direct myocardial injury caused by a large number of viral replication in the early stage of infection, and the other is the local immune cell infiltration and inflammatory damage of the myocardium in the adaptive immune response stage. There are few studies on the early innate immunity of CVB3 infection in myocardial tissue, but the appearance of macrophages in the early stage of CVB3 infection suggests that they can play a regulatory role as early innate immune response cells in myocardial tissue. Here, we discovered a possible new mechanism of VMC caused by CVB3, revealed new drug targets for anti-CVB3, and discovered the therapeutic potential of citrulline for VMC.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.