通过结合结构生物学方法确定 TIR-domain信号体的结构特征。

IF 2.9 2区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
IUCrJ Pub Date : 2024-09-01 DOI:10.1107/S2052252524007693
Akansha Bhatt , Biswa P. Mishra , Weixi Gu , Mitchell Sorbello , Hongyi Xu , Thomas Ve , Bostjan Kobe
{"title":"通过结合结构生物学方法确定 TIR-domain信号体的结构特征。","authors":"Akansha Bhatt ,&nbsp;Biswa P. Mishra ,&nbsp;Weixi Gu ,&nbsp;Mitchell Sorbello ,&nbsp;Hongyi Xu ,&nbsp;Thomas Ve ,&nbsp;Bostjan Kobe","doi":"10.1107/S2052252524007693","DOIUrl":null,"url":null,"abstract":"<div><p>The TIR (Toll/interleukin-1 receptor) domains are found in proteins with roles in the immune systems of humans, plants and bacteria. A combination of structural methods ranging from X-ray and electron crystallography to cryogenic electron microscopy and nuclear magnetic resonance spectroscopy has been required to understand how these domains contribute to signalling, highlighting the complementarity of different structural approaches.</p></div><div><p>The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches.</p></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"11 5","pages":"Pages 695-707"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364022/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural characterization of TIR-domain signalosomes through a combination of structural biology approaches\",\"authors\":\"Akansha Bhatt ,&nbsp;Biswa P. Mishra ,&nbsp;Weixi Gu ,&nbsp;Mitchell Sorbello ,&nbsp;Hongyi Xu ,&nbsp;Thomas Ve ,&nbsp;Bostjan Kobe\",\"doi\":\"10.1107/S2052252524007693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The TIR (Toll/interleukin-1 receptor) domains are found in proteins with roles in the immune systems of humans, plants and bacteria. A combination of structural methods ranging from X-ray and electron crystallography to cryogenic electron microscopy and nuclear magnetic resonance spectroscopy has been required to understand how these domains contribute to signalling, highlighting the complementarity of different structural approaches.</p></div><div><p>The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches.</p></div>\",\"PeriodicalId\":14775,\"journal\":{\"name\":\"IUCrJ\",\"volume\":\"11 5\",\"pages\":\"Pages 695-707\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364022/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUCrJ\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S205225252400071X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S205225252400071X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

TIR(Toll/白细胞介素-1 受体)结构域是各物种(从人类、植物到细菌)在免疫信号通路中发挥作用的蛋白质所共有的重要结构元素。经过数十年的研究,我们终于确定了这些结构域发出信号的分子基础的关键特征,包括开放式(丝状)装配的形成(负责通过合作装配形成机制发出信号,SCAF)和涉及核苷酸裂解的酶活性。我们从历史的角度介绍了促成这一认识的研究,并强调了不同结构方法在这一过程中发挥的作用:X 射线晶体学(包括序列晶体学)、微电子衍射(microED)、核磁共振(NMR)光谱和低温电子显微镜(cryo-EM)(涉及螺旋重建和单颗粒分析)。这种观点强调了不同结构方法的互补性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural characterization of TIR-domain signalosomes through a combination of structural biology approaches

The TIR (Toll/interleukin-1 receptor) domains are found in proteins with roles in the immune systems of humans, plants and bacteria. A combination of structural methods ranging from X-ray and electron crystallography to cryogenic electron microscopy and nuclear magnetic resonance spectroscopy has been required to understand how these domains contribute to signalling, highlighting the complementarity of different structural approaches.

The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IUCrJ
IUCrJ CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
7.50
自引率
5.10%
发文量
95
审稿时长
10 weeks
期刊介绍: IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr). The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信