人群计数的多维测量匹配

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hui Lin, Xiaopeng Hong, Zhiheng Ma, Yaowei Wang, Deyu Meng
{"title":"人群计数的多维测量匹配","authors":"Hui Lin, Xiaopeng Hong, Zhiheng Ma, Yaowei Wang, Deyu Meng","doi":"10.1109/TNNLS.2024.3435854","DOIUrl":null,"url":null,"abstract":"<p><p>This article addresses the challenge of scale variations in crowd-counting problems from a multidimensional measure-theoretic perspective. We start by formulating crowd counting as a measure-matching problem, based on the assumption that discrete measures can express the scattered ground truth and the predicted density map. In this context, we introduce the Sinkhorn counting loss and extend it to the semi-balanced form, which alleviates the problems including entropic bias, distance destruction, and amount constraints. We then model the measure matching under the multidimensional space, in order to learn the counting from both location and scale. To achieve this, we extend the traditional 2-D coordinate support to 3-D, incorporating an additional axis to represent scale information, where a pyramid-based structure will be leveraged to learn the scale value for the predicted density. Extensive experiments on four challenging crowd-counting datasets, namely, ShanghaiTech A, UCF-QNRF, JHU ++ , and NWPU have validated the proposed method. Code is released at https://github.com/LoraLinH/Multidimensional-Measure-Matching-for-Crowd-Counting.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional Measure Matching for Crowd Counting.\",\"authors\":\"Hui Lin, Xiaopeng Hong, Zhiheng Ma, Yaowei Wang, Deyu Meng\",\"doi\":\"10.1109/TNNLS.2024.3435854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article addresses the challenge of scale variations in crowd-counting problems from a multidimensional measure-theoretic perspective. We start by formulating crowd counting as a measure-matching problem, based on the assumption that discrete measures can express the scattered ground truth and the predicted density map. In this context, we introduce the Sinkhorn counting loss and extend it to the semi-balanced form, which alleviates the problems including entropic bias, distance destruction, and amount constraints. We then model the measure matching under the multidimensional space, in order to learn the counting from both location and scale. To achieve this, we extend the traditional 2-D coordinate support to 3-D, incorporating an additional axis to represent scale information, where a pyramid-based structure will be leveraged to learn the scale value for the predicted density. Extensive experiments on four challenging crowd-counting datasets, namely, ShanghaiTech A, UCF-QNRF, JHU ++ , and NWPU have validated the proposed method. Code is released at https://github.com/LoraLinH/Multidimensional-Measure-Matching-for-Crowd-Counting.</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2024.3435854\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2024.3435854","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文从多维度量理论的角度探讨了人群统计问题中的规模变化难题。基于离散度量能表达分散的地面实况和预测的密度图这一假设,我们首先将人群计数表述为一个度量匹配问题。在此背景下,我们引入了 Sinkhorn 计数损失,并将其扩展为半平衡形式,从而缓解了包括熵偏差、距离破坏和数量限制在内的问题。然后,我们对多维空间下的度量匹配进行建模,以便从位置和尺度两方面学习计数。为此,我们将传统的二维坐标支持扩展到三维空间,加入了一个额外的轴来表示尺度信息,并利用基于金字塔的结构来学习预测密度的尺度值。在四个具有挑战性的人群计数数据集(即上海科技 A、UCF-QNRF、JHU ++ 和 NWPU)上进行的广泛实验验证了所提出的方法。代码发布于 https://github.com/LoraLinH/Multidimensional-Measure-Matching-for-Crowd-Counting。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidimensional Measure Matching for Crowd Counting.

This article addresses the challenge of scale variations in crowd-counting problems from a multidimensional measure-theoretic perspective. We start by formulating crowd counting as a measure-matching problem, based on the assumption that discrete measures can express the scattered ground truth and the predicted density map. In this context, we introduce the Sinkhorn counting loss and extend it to the semi-balanced form, which alleviates the problems including entropic bias, distance destruction, and amount constraints. We then model the measure matching under the multidimensional space, in order to learn the counting from both location and scale. To achieve this, we extend the traditional 2-D coordinate support to 3-D, incorporating an additional axis to represent scale information, where a pyramid-based structure will be leveraged to learn the scale value for the predicted density. Extensive experiments on four challenging crowd-counting datasets, namely, ShanghaiTech A, UCF-QNRF, JHU ++ , and NWPU have validated the proposed method. Code is released at https://github.com/LoraLinH/Multidimensional-Measure-Matching-for-Crowd-Counting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信