{"title":"无 KRAS、NRAS 和 BRAF 基因突变的 PIK3CA 基因突变结直肠癌具有表观遗传修饰基因和 DNA 损伤应答基因的共同潜在靶向突变。","authors":"Ioannis A Voutsadakis","doi":"10.21873/cgp.20470","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Despite therapeutic advancements, metastatic colorectal cancer is usually fatal, necessitating novel approaches based on the molecular pathogenesis to improve outcomes. Some colorectal cancers have no mutations in the extended RAS panel (KRAS, NRAS, BRAF) genes and represent a special subset, which deserves particular therapeutic considerations.</p><p><strong>Materials and methods: </strong>The genomic landscape of colorectal cancers from publicly available genomic series was interrogated, using the cBioportal platform. Colorectal cancer cohorts with cancers devoid of KRAS/NRAS or BRAF mutations were evaluated for the presence of mutations in the catalytic sub-unit alpha of kinase PI3K, encoded by the gene PIK3CA.</p><p><strong>Results: </strong>PIK3CA mutations in the absence of KRAS/NRAS/BRAF mutations were observed in 3.7% to 7.6% of colorectal cancers in the different series examined. Patients with all four genes in wildtype configuration (quadruple wild type) represented 32.2% to 39.9% of cases in the different series examined. Compared with quadruple wild type cancers, triple (KRAS/NRAS/BRAF) wild type/PIK3CA mutated cancers had a higher prevalence of high TMB cases and additional mutations in colorectal cancer associated genes except for mutations in TP53. Mutations in genes encoding for epigenetic modifiers and the DNA damage response (DDR) were also more frequent in triple wild type/PIK3CA mutated cancers. The prognosis of the two groups was comparable.</p><p><strong>Conclusion: </strong>Colorectal cancers with PIK3CA mutations in the absence of KRAS/NRAS/BRAF mutations have frequently mutations in epigenetic modifiers and DDR response genes, which may provide opportunities for targeting. These mutations are present in a smaller subset of quadruple wild type cancers.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"21 5","pages":"533-548"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363921/pdf/","citationCount":"0","resultStr":"{\"title\":\"PIK3CA Mutated Colorectal Cancers Without KRAS, NRAS and BRAF Mutations Possess Common and Potentially Targetable Mutations in Epigenetic Modifiers and DNA Damage Response Genes.\",\"authors\":\"Ioannis A Voutsadakis\",\"doi\":\"10.21873/cgp.20470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>Despite therapeutic advancements, metastatic colorectal cancer is usually fatal, necessitating novel approaches based on the molecular pathogenesis to improve outcomes. Some colorectal cancers have no mutations in the extended RAS panel (KRAS, NRAS, BRAF) genes and represent a special subset, which deserves particular therapeutic considerations.</p><p><strong>Materials and methods: </strong>The genomic landscape of colorectal cancers from publicly available genomic series was interrogated, using the cBioportal platform. Colorectal cancer cohorts with cancers devoid of KRAS/NRAS or BRAF mutations were evaluated for the presence of mutations in the catalytic sub-unit alpha of kinase PI3K, encoded by the gene PIK3CA.</p><p><strong>Results: </strong>PIK3CA mutations in the absence of KRAS/NRAS/BRAF mutations were observed in 3.7% to 7.6% of colorectal cancers in the different series examined. Patients with all four genes in wildtype configuration (quadruple wild type) represented 32.2% to 39.9% of cases in the different series examined. Compared with quadruple wild type cancers, triple (KRAS/NRAS/BRAF) wild type/PIK3CA mutated cancers had a higher prevalence of high TMB cases and additional mutations in colorectal cancer associated genes except for mutations in TP53. Mutations in genes encoding for epigenetic modifiers and the DNA damage response (DDR) were also more frequent in triple wild type/PIK3CA mutated cancers. The prognosis of the two groups was comparable.</p><p><strong>Conclusion: </strong>Colorectal cancers with PIK3CA mutations in the absence of KRAS/NRAS/BRAF mutations have frequently mutations in epigenetic modifiers and DDR response genes, which may provide opportunities for targeting. These mutations are present in a smaller subset of quadruple wild type cancers.</p>\",\"PeriodicalId\":9516,\"journal\":{\"name\":\"Cancer Genomics & Proteomics\",\"volume\":\"21 5\",\"pages\":\"533-548\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genomics & Proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21873/cgp.20470\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20470","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
PIK3CA Mutated Colorectal Cancers Without KRAS, NRAS and BRAF Mutations Possess Common and Potentially Targetable Mutations in Epigenetic Modifiers and DNA Damage Response Genes.
Background/aim: Despite therapeutic advancements, metastatic colorectal cancer is usually fatal, necessitating novel approaches based on the molecular pathogenesis to improve outcomes. Some colorectal cancers have no mutations in the extended RAS panel (KRAS, NRAS, BRAF) genes and represent a special subset, which deserves particular therapeutic considerations.
Materials and methods: The genomic landscape of colorectal cancers from publicly available genomic series was interrogated, using the cBioportal platform. Colorectal cancer cohorts with cancers devoid of KRAS/NRAS or BRAF mutations were evaluated for the presence of mutations in the catalytic sub-unit alpha of kinase PI3K, encoded by the gene PIK3CA.
Results: PIK3CA mutations in the absence of KRAS/NRAS/BRAF mutations were observed in 3.7% to 7.6% of colorectal cancers in the different series examined. Patients with all four genes in wildtype configuration (quadruple wild type) represented 32.2% to 39.9% of cases in the different series examined. Compared with quadruple wild type cancers, triple (KRAS/NRAS/BRAF) wild type/PIK3CA mutated cancers had a higher prevalence of high TMB cases and additional mutations in colorectal cancer associated genes except for mutations in TP53. Mutations in genes encoding for epigenetic modifiers and the DNA damage response (DDR) were also more frequent in triple wild type/PIK3CA mutated cancers. The prognosis of the two groups was comparable.
Conclusion: Colorectal cancers with PIK3CA mutations in the absence of KRAS/NRAS/BRAF mutations have frequently mutations in epigenetic modifiers and DDR response genes, which may provide opportunities for targeting. These mutations are present in a smaller subset of quadruple wild type cancers.
期刊介绍:
Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004.
Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal.
Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.